Nominal Wage Rigidity in Village Labor Markets

Supreet Kaur

October 2014
Nominal Wage Rigidity in Village Labor Markets

Supreet Kaur†

Version: October 2014

Abstract

This paper tests for downward nominal wage rigidity in markets for casual daily agricultural labor in a developing country context. I examine wage and employment responses to rainfall shocks—which shift labor demand—in 600 Indian districts from 1956-2009. First, there is asymmetric wage adjustment: nominal wages rise in response to positive shocks but do not fall during droughts. Second, after transitory positive shocks have dissipated, nominal wages do not return to previous levels—they remain high in future years. Third, inflation moderates these effects: when inflation is higher, real wages are more likely to fall during droughts and after transitory positive shocks. Fourth, wage distortions generate employment distortions, creating boom and bust cycles: employment is 9% lower in the year after a transitory positive shock than if the positive shock had not occurred. Fifth, consistent with the misallocation of labor across farms, households with small landholdings increase labor supply to their own farms when they are rationed out of the external labor market. The wage and employment results are not consistent with other transmission mechanisms, such as migration or capital accumulation. These findings suggest that wage rigidity lowers employment levels and increases employment volatility—in a setting with few institutional constraints. Data from a new survey I conducted in two Indian states suggests that agricultural workers and employers: view nominal wage cuts as unfair; are considerably less likely to regard real wage cuts as unfair if they are achieved through inflation; and believe that nominal wage cuts cause effort reductions.

*I am deeply grateful to Lawrence Katz, Michael Kremer, Sendhil Mullainathan, and Rohini Pande for feedback and encouragement. For helpful discussions, I thank Melissa Adelman, George Akerlof, Emily Breza, Lorenzo Casaburi, Katie Coffman, Tom Cunningham, Francois Gerard, Edward Glaeser, Clement Imbert, Seema Jayachandran, Asim Khwaja, David Laibson, Lauren Merrill, Emi Nakamura, Frank Schilbach, Heather Schofield, Jon Steinsson, Laura Trucco, Eric Verhoogen, and numerous seminar and conference participants. I thank Prasanta Nayak for outstanding field assistance and Lakshmi Iyer for sharing the World Bank data. This project received financial support from the Project on Justice, Welfare, and Economics Dissertation Fellowship and the Giorgio Ruffolo Doctoral Fellowship in Sustainability Science at Harvard University. All errors are my own.

†Department of Economics, Columbia University (kaur@columbia.edu).
1 Introduction

This paper empirically examines downward nominal wage rigidity and its employment consequences in a developing country context. As is the case with any price, the wage allocates labor—by far the biggest factor input, especially in developing countries—to production. Adjustments in the wage are therefore what facilitate the labor market response to shocks. Rigidities may prevent wages from adjusting fully to shocks, with potentially important consequences for employment, earnings, and output. A large literature in economics has discussed these implications.\(^1\) For example, if wages do not fall during negative shocks, this may increase layoffs—deepening the impact of recessions and exacerbating business cycle volatility.\(^2\) In addition, the labor rationing generated by rigidities could give rise to “disguised unemployment” or “forced entrepreneurship”, creating a misallocation of labor across firms (Singh et al. 1986).

Some early work in development argued for the presence of nominal rigidities. For example, Dreze and Mukherjee (1989) observe that in casual daily labor markets in Indian villages, “The same standard wage often applies for prolonged periods — from several months to several years... The standard wage (in money terms)...appears to be, more often than not, rigid downwards during the slack season.” Historical time series data from the Indian village of Tinur, for example, appears consistent with such observations (Figure 1). The prevailing wage follows a step-ladder progression: adjusting upwards every few years and with no apparent downward nominal adjustments over a 12-year period, including in drought years. Looking across a set of 256 districts in India, the distribution of nominal wage changes exhibits a bunching of mass at zero, with a discontinuous drop to the left of zero (Figure 2).\(^3\) These patterns, however, could arise from measurement error such as rounding bias in reported wages. In addition,

\(^1\)For overviews, see, e.g., Tobin (1972); Greenwald and Stiglitz (1987); Blanchard (1990); Clarida et al. (1999); Akerlof (2002); and Galí (2009).

\(^2\)See Tobin (1972). Schmitt-Grohé and Uribe (2013), for example, provide evidence that nominal wages did not fall in Europe after the 2008 financial crisis, despite large increases unemployment.

\(^3\)Under a continuous distribution of shocks, one may not expect a large discrete and asymmetric jump at nominal zero changes (McLaughlin 1994, Kahn 1997). In contrast, the distribution of real wage changes in Figure 2 appears continuous and symmetric around zero.
to the extent that such evidence supports wage rigidity, it does not provide insight on whether rigidities have any real consequences for employment.

These challenges apply more broadly to documenting wage rigidity in any context. The approach in existing work—almost all of which uses data from OECD countries—is based on examining distributions of wage changes, as in Figure 2. This has provided compelling documentation in OECD countries (e.g., Akerlof et al. 1996, Kahn 1997, Card and Hyslop 1997, Dickens et al. 2007). However, this approach has made it difficult to examine potential employment effects of rigidities.4 There is little direct evidence that wage rigidity affects employment in the labor market in any setting.5

In this paper, I develop a different approach to test for wage rigidity: I isolate shocks to the marginal revenue product of labor, and examine wage adjustment and employment effects in response to these shocks.6 I apply this approach in the context of markets for casual daily agricultural labor—a major source of employment in poor countries. In this setting, local rainfall variation generates transitory labor demand shocks. I investigate responses to these shocks in over 600 Indian districts from 1956 to 2009. My identification strategy relies on the assumption that rainfall shocks are transitory: monsoon rainfall affects total factor productivity (TFP) in the current year, but does not directly affect TFP in future years. Below, I validate this assumption, and also discuss concerns that the effects may be confounded by other propagation mechanisms, such as migration or capital accumulation.

4This approach typically limits analysis to workers employed by the same firm in consecutive years. If workers quit when they anticipate wage cuts, then wage cuts will appear more rare than they actually are. On the other hand, measurement error can make wages less rigid than they actually are. For discussions of the measurement error challenges associated with using histograms to document wage rigidity, see, for example, Akerlof, Dickens, and Perry (1996), Card and Hyslop (1997), Altonji and Devereux (2000), and Barattieri et al. (2014).

5A notable exception is Card (1990), who examines union workers whose nominal wages are explicitly indexed to expected inflation. As a result, real wages cannot adjust to inflation surprises, and the firms adjust employment when inflation surprises change real wages. Card and Hyslop (1997) examine whether periods of higher inflation are correlated with smaller impacts of negative shocks on unemployment in labor markets in the US, and do not find evidence for a relationship. There remains a debate as to whether wage rigidity has any relevance for employment dynamics (e.g., Pissarides 2009, Rogerson and Shimer 2011).

6Holzer and Montgomery (1993) perform analysis in this spirit. They assume sales growth reflects demand shifts, and examine correlations of wage and employment growth with sales growth in the U.S. They find that wages changes are asymmetric and are small compared to employment changes.
Wage adjustment is consistent with downward rigidities. First, adjustment is asymmetric. Relative to no shock, nominal wages rise in response to positive shocks, but are no lower during negative shocks on average. Second, transitory positive shocks generate ratcheting. When a positive shock in one year is followed by a non-positive shock in the following year, nominal wages do not adjust back down—they are higher than they would have been in the absence of the lagged transitory positive shock.

Third, particularly consistent with nominal rigidity, inflation moderates these wage distortions. When inflation is higher, negative shocks are more likely to result in lower real wages, and previous transitory positive shocks are less likely to have persistent wage effects. When inflation is above 6%, I cannot reject that lagged positive shocks have no impact on current real wages. In contrast, inflation has no differential effect on upward real wage adjustment to current positive shocks—consistent with downward nominal rigidities. These findings support the hypothesis that inflation “greases the wheels” of the labor market.

When rigidities bind—keeping real wages above market clearing levels—this distorts employment. If a district experiences a transitory positive shock (and therefore has a ratcheted wage in the following year), total agricultural employment is 9% lower in the following year than if the lagged positive shock had not occurred. In contrast, these shocks have no effect on non-agricultural hiring. Overall, these employment dynamics are consistent with boom and bust cycles in village economies. They also match observations from other contexts that labor markets exhibit relatively large employment volatility and small wage variation.

The brunt of the employment decreases after lagged positive shocks is borne by poorer individuals—the landless and small landholders—who are the primary suppliers of hired agricultural labor. When they are rationed out of the external labor market, small landholders increase labor supply to their own farms. These findings

7 In the presence of nominal rigidities, inflation will enable real wages to adjust downward without requiring any nominal wage cuts. Because local rainfall shocks do not affect—and are therefore uncorrelated with—inflation, this enables a direct test of whether inflation affects real wage adjustment.

8 Total agricultural employment is total worker-days spent in farm work—whether on one’s own land or as hired labor on someone else’s land. This effect is driven by a decreased in hired employment.
are consistent with the prediction that labor rationing will lead to “disguised unemployment” and separation failures, with smaller farms using labor more intensively in production than larger farms (Singh, Squire, and Strauss 1986; Benjamin 1992).

Could the above findings be explained by factors other than nominal wage rigidity? There are two categories of potential concerns. The first is a violation of the assumption that shocks are transitory. If positive shocks have persistent productivity effects, then this could explain the increase in future wages. However, then employment should also be higher in the following year (whereas in the data it is lower). Also, since inflation should not affect agricultural fundamentals like soil moisture, inflation should not dampen the ratcheting effect. In addition, because rainfall is serially uncorrelated across years, it is not the case that shocks in future years have a mechanical relationship with previous shocks.

The second set of concerns is that the pattern of results is driven not by wage rigidity, but by other market mechanisms. Labor supply shifters such as migration or inter-temporal substitution in labor could explain why positive shocks increase future wages and lower future employment. However, such explanations would need to account for wage distortions in response to both negative shocks and after lagged positive shocks, and why these behaviors only occur when inflation is low but not when it is high. Similarly, labor demand shifters—such as increased capital investment—could lower employment after lagged positive shocks. However, this should decrease wages for manual work, which is counterfactual to the results. The effects of accumulating real assets should also not dissipate immediately with high inflation and after only a year or two with lower inflation rates. In addition, there is little direct evidence in the data for an effect on migration or capital accumulation. For such reasons, I argue that the pattern of results is most consistent with downward nominal wage rigidity.

The results point to the relevance of nominal rigidities in a setting with few of

9In the presence of rationing, a household’s labor supply decision will not be separable from its decision of how much labor to use on its farm. This is a prominent hypothesis for why smaller farms tend to use more labor per acre and have higher yields per acre than larger farms—a widely documented phenomenon in poor countries (e.g. Bardhan 1973, Udry 1996). These results lend some support to this hypothesis. Behrman (1999) reviews the empirical literature on separation failures.
the institutional constraints that have received prominence in the empirical literature on wage rigidity. In villages, minimum wage legislation is largely ignored and formal unions are rare (Rosenzweig 1980, 1988). Wage contracts are typically bilaterally arranged between employers and workers and are of short duration (usually one day), making it potentially easier for contracts to reflect changes in market conditions (Dreze and Mukherjee 1989). A growing body of evidence argues that nominal wage cuts are perceived as unfair, causing decreases in worker productivity.10 Following Kahneman, Knetsch, and Thaler (1986), I presented 396 agricultural laborers and employers in 34 villages across 6 districts with scenarios about wage setting behavior, and asked them to rate the behaviors as fair or unfair on a 4-point scale. The results suggest that nominal wage cuts violate fairness norms. For example, the majority of respondents thought it was unfair to cut nominal wages after a surge in unemployment (62\%) or during a severe drought (64\%). In contrast, relatively few people thought that a real wage cut is unfair if it is achieved through inflation (9\%). Respondents also expressed a strong belief that workers decrease effort when fairness norms are violated.11

This paper is closely linked to the literature on labor market distortions in poor countries. Early theoretical work in development focused heavily on labor market imperfections.12 However, there has been no direct empirical documentation of downward wage rigidity in this setting to date. There is a broader empirical literature on the functioning of labor markets in developing countries. Some studies find results consistent with competitive markets exhibiting wage and employment adjustments to shocks (Rosenzweig 1980, Benjamin 1992, Jayachandran 2006, Mobarak and Rosen-
zyweig 2014). Other studies find evidence consistent with imperfections such as separation failures (Bardhan 1973, Udry 1996, Foster et al. 1997, Barrett et al. 2008, Foster and Rosenzweig 2011, LaFave and Thomas 2014). These two strands of evidence are not contradictory. The findings in this paper indicate that in this setting, real wages do adjust often in response to market forces and play an allocative role. However, in cases when nominal rigidities bind, thereby distorting real wages, this affects employment, with the potential to contribute to labor market imperfections.

The rest of the paper proceeds as follows. Section 2 presents a model of nominal wage rigidity. Section 3 lays out the empirical strategy and Section 4 presents the results. Section 5 evaluates whether explanations other than nominal rigidity are consistent the results. Section 6 discusses mechanisms and presents survey evidence for the role of fairness norms in villages. Section 7 concludes.

2 Model

I model a small open economy with decentralized wage setting and exogenous product prices. Rigidities arise because workers view nominal wage cuts as unfair, and retaliate to such cuts by decreasing effort.14 I use this framework to develop testable implications of fairness preferences on labor market outcomes. For simplicity, what follows is a static model of the labor market, in which employers and workers make decisions about the current period, taking the previous period's wages as given. At the end of the section, I discuss implications of a multi-period dynamic setting.

2.1 Set-up

The labor force is comprised of a unit mass of potential workers. All workers are equally productive. They are indexed by parameter $\phi_i \sim U[0, \bar{\phi}]$, which equals worker

13Other recent papers explore other related topics, such as labor supply elasticity (Goldberg 2014), credit and labor allocation (Fink, Jack, and Masiye 2014), and migration (Morten 2013; Bryan, Chowdhury, and Mobarak 2014; McKenzie, Theoharides, and Yang 2014).

14In Section 6, I provide support for this modeling assumption using survey evidence. In Section 5, I discuss other micro-foundations for rigidity in light of the empirical results.
i's cost of supplying 1 unit of effective labor. The worker's payoff from accepting a nominal wage offer of \(w \) equals the utility from consuming her real wage minus the disutility of working:

\[
u \left(\frac{w}{p} \right) - \phi_i e \left\{ 1 + \frac{1-\lambda}{\lambda} I_{\{w<\bar{w}_{t-1}\}} \right\},
\]

where \(p \) is the price level. The term in brackets creates reference dependence in utility around the previous period’s average market wage, \(\bar{w}_{t-1} \). Workers perceive working below this wage as unfair. The disutility of work, \(\phi_i e \), is scaled up by \(\frac{1-\lambda}{\lambda} I_{\{w<\bar{w}_{t-1}\}} \), where \(I_{\{w<\bar{w}_{t-1}\}} \) is an indicator for whether the wage is below \(\bar{w}_{t-1} \) and \(\lambda \in (0, 1] \). The case of \(\lambda = 1 \) corresponds to the benchmark of no reference dependence. Note that time subscripts are omitted from \(w, p, \) and \(e \) for simplicity of notation, since all results in the model will pertain to period \(t \) (the current period), taking as given \(\bar{w}_{t-1} \).

A market-wide fairness norm governs effort behavior. The worker usually exerts a standard amount of effort: \(e = 1 \). However, when she feels treated unfairly by the firm, she reduces effort to exactly offset the disutility from the fairness violation:

\[
e = \begin{cases}
1 & w \geq \bar{w}_{t-1} \\
\lambda & w < \bar{w}_{t-1}
\end{cases}
\] (1)

In the model, I take this fairness norm as exogenous. More generally, it can be conceptualized as the reduced form for a strategy in a repeated game. Worker \(i \)'s payoff from accepting wage offer \(w \) reduces to \(u \left(\frac{w}{p} \right) - \phi_i e \). I normalize the payoff from not working as 0. When all firms offer \(w \), aggregate labor supply is:

\[
L^S = \frac{1}{\phi} u \left(\frac{w}{p} \right).
\]

There are \(J \) firms (indexed by \(j \)), where \(J \) is large so that each firm’s wage contributes negligibly to the average market wage. Firm \(j \)'s profits from hiring \(L_j \) workers at nominal wage \(w_j \) equals:

\[
\pi_j = p \theta f (e L_j) - w_j L_j,
\] (2)

where \(\theta \) is a non-negative stochastic productivity parameter whose realization is common to all firms and \(f (\bullet) \) is a continuous, increasing, twice-differentiable concave

\footnote{In Indian villages, at any point in time, there is a gender-specific prevailing wage; any agricultural worker employed in the village is typically paid this wage. Thus, the average market wage in the previous period would also correspond to the individual’s own wage in the previous period.}

\footnote{Other fairness norm-based efficiency wage models of wage rigidity—e.g. Akerlof and Yellen (1990), Eliaz and Spiegler (2013), and Benjamin (2014)—also assume exogenous rules for effort decreases.}
function. Note that output depends on effective labor, eL_j.

All firms simultaneously post a wage. Firms satisfy labor demand in descending order of posted wages. If multiple firms post the same wage, those firms proceed in random order. For simplicity, I assume each firm hires the available workers with the lowest ϕ-values that are willing to work for it.\footnote{Specifying an allocation mechanism by which workers are matched to firms is needed to formalize the impact of off-equilibrium deviations on firm profits in the model proofs. The mechanism described here ensures that the firms offering the highest wage receive priority in hiring. In addition, it maximizes gains from trade in the narrow sense that for a given wage offer, those workers that would benefit the most from employment (the lowest ϕ workers) are the ones that get the job.}

2.2 Benchmark Case: No Rigidity

In the benchmark case where there are no fairness preferences, $e = 1$ for all wage levels. Firm j’s profits are therefore: $\pi_j = p\theta f(L_j) - w_jL_j$. I focus on the symmetric pure strategy Nash Equilibrium, in which all firms offer the same wage:\footnote{Since all employers in a village typically pay the same prevailing wage, in this setting it is reasonable to focus on pure strategy symmetric equilibria.} $w_j = w^*(\theta, p) \forall j$, where $w^*(\theta, p)$ will be used to denote the equilibrium wage level in the benchmark case. The firm’s first order condition pins down the optimal choice of labor:

$$p\theta f'(L^*) = w^*. \quad (3)$$

The market clearing condition is:

$$JL^* = \frac{1}{\phi} u \left(\frac{w^*}{p} \right). \quad (4)$$

Lemma 1: Market clearing in benchmark case

If workers do not exhibit fairness preferences, the unique pure strategy symmetric Nash Equilibrium will satisfy conditions (3) and (4). The labor market will clear for all realizations of θ.

Proof: See Appendix A.1. ■

Note that (3) and (4) correspond exactly to the conditions in a competitive equilibrium.
2.3 Downward Rigidity at the Previous Period’s Wage

I now turn to examine the implications of fairness preferences. Expression (2) indicates that for any \((w_j, L_j)\) combination, profits are always weakly lower in the fairness case than the benchmark case.

In the symmetric pure strategy Nash equilibrium:
\[w_j = \bar{w}(\theta, p, \bar{w}_{t-1}) \forall j, \]
where \(\bar{w}(\theta, p, \bar{w}_{t-1})\) will be used to denote the equilibrium wage level corresponding to total factor productivity (TFP) \(\theta\), price \(p\), and the previous period’s wage \(\bar{w}_{t-1}\) in the fairness case. All firms demand the same amount of labor, \(L(\theta, p, \bar{w}_{t-1})\). For a given \(\bar{w}\), this is pinned down by the firm’s first order condition, which is discontinuous around \(\bar{w}_{t-1}\):
\[
\bar{w} = \begin{cases}
p\theta f'(L) & \bar{w} \geq \bar{w}_{t-1} \\
p\lambda f'(\lambda L) & \bar{w} < \bar{w}_{t-1} \end{cases}.
\]
When \(\bar{w} \geq \bar{w}_{t-1}\), this corresponds exactly to the first order condition in the benchmark case. However, when \(\bar{w} < \bar{w}_{t-1}\), retaliation by the firm’s workers makes them less productive. I assume \(f'(L) > \lambda f'(\lambda L)\) for \(\lambda < 1\). This implies that at wages below \(\bar{w}_{t-1}\), firms demand less labor than in the benchmark case. This condition always holds, for example, under Cobb-Douglas production: \(f(eL) = (eL)^{\alpha}\).

Implicitly define \(\theta_R\) as:
\[w^*(\theta_R, p) = \bar{w}_{t-1}. \]
In other words, \(\theta_R\) is the unique value of \(\theta\) at which \(\bar{w}_{t-1}\) would be the market clearing equilibrium wage in the benchmark case. Proposition 1 establishes asymmetric adjustment in wages around \(\theta_R\).

Proposition 1: Asymmetric adjustment to shocks

In the unique pure strategy symmetric Nash equilibrium:

(i) There exists a \(\theta'_R < \theta_R\) such that for all \(\theta \in (\theta'_R, \theta_R)\),
\[\bar{w}(\theta, p, \bar{w}_{t-1}) = \bar{w}_{t-1} > w^*(\theta, p), \]
and there will be excess supply of labor. In addition, \(\lim_{\lambda \to 0} \theta'_R = 0\).

(ii) For \(\theta \geq \theta_R\), the wage will correspond to the benchmark case:
\[\bar{w}(\theta, p, \bar{w}_{t-1}) = w^*(\theta, p), \]
and the labor market will clear.

Proof: See Appendix A.2. ■
For values of θ above θ_R, firms will increase wages smoothly as θ rises. However, for sufficiently small decreases in θ below θ_R, it will be more profitable to maintain wages at \bar{w}_{t-1} than to cut wages and have effort decreases due to worker retaliation. Since the wage will remain the same, aggregate labor supply will remain the same. However, labor demand will fall, leading to excess supply in the market.

If θ falls below θ'_R, \bar{w}_{t-1} is no longer the unique equilibrium, and wages may fall below \bar{w}_{t-1}. Note that θ'_R will be lower for smaller values of λ: as λ approaches 0, firms will never find it profitable to lower wages below \bar{w}_{t-1}.

2.4 Impact of Increases in the Previous Period’s Wage

Proposition 2 states that a relatively higher wage in the previous period can create ratcheting effects—leading to a higher wage and more unemployment.

Proposition 2: Ratcheting: Wage and employment effects of a higher lagged wage

Suppose $w^a < w^b$. Define θ^b_R implicitly as $w^*(\theta^b_R, p) = w^b$. For any $\theta < \theta^b_R$ and λ sufficiently small:

$$\bar{w}(\theta, p, w^b) > \bar{w}(\theta, p, w^a) \text{ and } L(\theta, p, w^b) < L(\theta, p, w^a).$$

Proof: See Appendix A.3. ■

A higher lagged wage has the potential to exacerbate distortions in the current period through two channels. First, since $\theta^b_R > \theta^a_R$, there is a broader range of θ-values at which wage distortions occur if $\bar{w}_{t-1} = w^b$ than if $\bar{w}_{t-1} = w^a$. Second, for any given $\theta < \theta^b_R$, employment will be lower (and rationing higher) if the prevailing wage is w^b rather than w^a. In contrast, there will be no differential impact on wages or employment if $\theta \geq \theta^b_R$, since the market will clear for either $\bar{w}_{t-1} = w^a$ or $\bar{w}_{t-1} = w^b$.

2.5 Impact of Inflation

In the benchmark case, prices are neutral. It is straightforward to verify from (3) and (4):

$$\frac{\partial w^*(\theta, p)}{\partial p} = \frac{w^*}{p} \text{ and } \frac{\partial L^*(\theta, p)}{\partial p} = 0.$$ If there is a price increase, firms raise nominal
wages to keep real wages constant and employment therefore does not change.

In contrast, when workers have fairness preferences over a nominal wage, inflation will no longer be neutral. For any \(\bar{w}_{t-1} \), a price increase means that the value of \(\theta \) at which \(\bar{w}_{t-1} \) is the market clearing nominal wage will now be lower. The rigidity will bind to the left of this lower \(\theta \) value; this means distortions will affect a smaller portion of the \(\theta \)-distribution.

Proposition 3: Inflation will mitigate distortions from rigidity

For any fixed \(\tilde{\theta} \) and \(\tilde{p} \) such that \(\bar{w}\left(\tilde{\theta}, \tilde{p}, \bar{w}_{t-1}\right) = \bar{w}_{t-1} > w^*\left(\tilde{\theta}, \tilde{p}\right) \),

\[
\frac{\partial}{\partial p} \left(\frac{w^*\left(\tilde{\theta}, p, \bar{w}_{t-1}\right)}{p} \right) \bigg|_{\theta=\tilde{\theta}, p=\tilde{p}} < 0.
\]

In addition, \(\exists p' > \tilde{p} \) such that \(\forall p \geq p' : \bar{w}\left(\tilde{\theta}, p, \bar{w}_{t-1}\right) = w^*\left(\tilde{\theta}, p\right) \).

Proof: See Appendix A.4. ■

For any fixed \(\tilde{\theta} \) at which the rigidity binds (i.e. the wage is at the previous period’s wage), an increase in prices will enable the real wage to fall closer to the market clearing level without incurring effort retaliation. With a sufficiently large increase in prices (i.e. at \(p' \)), the wage at \(\tilde{\theta} \) will correspond to the benchmark case and the labor market will clear. If prices rise above \(p' \), then nominal wages will rise to keep the real wage constant, so inflation will be neutral as in the benchmark case.

2.6 Discussion

The model assumes that workers and firms make decisions only taking into account current period payoffs. In a multi-period setting, if there is a high \(\theta \)-realization, firms would trade off the benefits of raising wages to satisfy labor demand now, versus the expected decrease in future profits from the ratcheting effect. In the model, the former consideration would dominate the latter, producing almost full upward adjustment to positive shocks. This is because each firm gains the full benefit of posting a higher wage this period, but only bears a infinitesimal fraction of the cost since each firm’s wage contributes negligibly to the average market wage. In reality, a firm may internalize
more of the future costs—e.g., if it has long-term relationships with individual workers or if firms can collude to not raise wages. However, the literature suggests that in the empirical context of this study, this is unlikely.19 To the extent that this does occur, the core qualitative predictions that distinguish rigidity from the benchmark case above would still remain, but the expected magnitude of the effects would be smaller. This would make it less likely that I would be able to reject the null model in favor of downward nominal rigidity (see Section 3.2).

In addition, the model assumes the reference point is the previous period’s nominal wage. Other formulations of the reference point, such as the expected wage (Koszegi and Rabin 2006), would alter some of the specific predictions.20 Alternately, consistent with evidence in Loewenstein and Prelec (1991), workers may demand upward sloping wage profiles. This could lead the reference wage to be of the form $\bar{w}_{t-1} (1 + \varphi)$, reflecting a norm for a φ percentage wage increase in each period. My formulation of the reference point is simple and matches the survey evidence provided in Section 6 and in Kahneman et al. (1986). While the empirical results below do appear to provide support for some types of reference points as being more likely than others, I take no strong stance on the functional form of the reference point, or on the micro-foundation for rigidity more generally.

\section{Empirical Strategy}

\subsection{Context: Rural Labor Markets in India}

Agricultural production in India, as in most developing countries, is largely undertaken on smallholder farms. The median household farm size is about 0.9 acres.21 The

19For example, Dreze and Mukherjee (1989) observe, “No explicit collusion exists between either employers or labourers. Individual employers have no monopsonistic power: the pool of employers is large, and re-sorting of partners occurs constantly.”

20For example, prior positive shocks would not necessarily create ratcheting because the reference point would depend on the expected value of θ. Inflation would not affect real wage adjustment if the reference point is formulated with respect to the real wage.

21Unless stated otherwise, the statistics in this sub-section are computed from India’s National Sample Survey Employment/Unemployment rounds (1982-2009).
composition of farm employment is often a mix of household and hired labor. Markets for hired labor are active: most households buy and/or sell labor. Labor is typically traded in decentralized markets for casual daily workers. 98% of agricultural wage employment is through casual wage contracts (with regular/salaried workers making up the bulk of the remaining 2%). In addition, 67% of landless rural workers report casual employment as their primary source of earnings.

There are few institutional constraints in these markets. Contracts are usually negotiated bilaterally between landowners and laborers in a decentralized manner; unions or other formal labor institutions are rare. Wage contracts are typically of short duration (on the order of 1-3 days). As a result, they can more easily reflect recent changes in market conditions and time worked is more flexible than in other contexts. Minimum wage policies are in practice ignored and there is little government intervention in the private wage labor market (Rosenzweig 1980; 1988).

Agricultural production is heavily rainfall dependent and exhibits considerable seasonality. The major rainfall episode is the yearly monsoon, which accounts for over 80% of annual rainfall. The monsoon arrives between May-July in most parts of the country and marks the beginning of the agricultural year. For rice (the major crop) as well as some other crops, planting occurs once the rains begin. Subsequent months involve various activities such as transplanting, fertilizer application, and weeding. Rice harvesting typically occurs between November and January. February-April is the lean season in rain-fed areas; during this time, growing crops usually requires irrigation and the monsoon is a less important determinant of labor demand.

3.2 Empirical Tests

A distinct labor market is defined as an Indian district (an administrative geographic unit). Let θ_{dt} denote the rainfall realization in district d in year t. The empirical implementation will focus on discrete shocks. As discussed in Section 3.4, in each

22See, for example, Rosenzweig (1980), Benjamin (1992), and Bardhan (1997).

23Of course, this does not rule out longer-term informal implicit contracts.
year, a labor market can experience a negative shock, no shock, or positive shock:
\[\theta_{dt} \in \{ \tilde{\theta}^N, \tilde{\theta}^0, \tilde{\theta}^P \} \]. These shocks are i.i.d.: uncorrelated with any other determinants of the wage and serially uncorrelated across years. In addition, shocks are transitory: the rainfall shock in a given year affects TFP in only that year.\(^{24}\)

Let \(w^*_{dt}(\theta_{dt}) \) denote the district’s year \(t \) market clearing nominal wage, as pinned down by conditions (3) and (4). The actual wage, \(w_{dt} \), may differ from \(w^*_{dt} \). Define \(\Delta_N \) and \(\Delta_P \) as the percentage difference in the market clearing real wage when there is a positive or negative shock, respectively, relative to no shock:
\[\Delta_P \equiv \ln \left(\frac{w^*_{dt}(\tilde{\theta}^P)}{w_{dt}(\tilde{\theta}^0)} \right) - \ln \left(\frac{w^*_{dt}(\tilde{\theta}^0)}{w_{dt}(\tilde{\theta}^0)} \right), \forall d,t \] and
\[\Delta_N \equiv \ln \left(\frac{w^*_{dt}(\tilde{\theta}^N)}{w_{dt}(\tilde{\theta}^0)} \right) - \ln \left(\frac{w^*_{dt}(\tilde{\theta}^0)}{w_{dt}(\tilde{\theta}^0)} \right), \forall d,t. \]

In the absence of rigidities, the following simple model captures the effect of transitory shocks on equilibrium wages:
\[\ln w_{dt} = \alpha_0 + \alpha_1 Pos_{dt} + \alpha_2 Neg_{dt} + \ln p_t + \delta_d + \varepsilon_{dt}, \tag{6} \]
where \(Pos_{dt} \) and \(Neg_{dt} \) are binary indicators for a positive shock and negative shock, respectively, in district \(d \) in year \(t \), and \(\delta_d \) is a vector of district fixed effects that captures differences in real wage levels across districts. If wages adjust fully to changes in \(\theta_{dt} \), then by the definitions above, \(\alpha_1 = \Delta_P > 0 \) and \(\alpha_2 = -\Delta_N < 0 \). The empirical strategy builds on this basic specification, which is amenable to the fact that much of the analysis relies on data from repeated cross-sections over non-consecutive years.\(^{25}\)

The empirical strategy begins by testing for downward rigidity (Propositions 1-2), and then add a test to distinguish nominal from real rigidity (Proposition 3). Examining the joint impact of current and lagged shocks can be used to test Propositions 1-2: current rainfall determines TFP, while previous transitory shocks affect the previous period’s wage. Since there are 3 possible shocks in a given year, over every consecutive

\(^{24}\)This is a standard assumption in prior work that exploits rainfall shocks to investigate a range of outcomes in India (e.g., Paxson 1992; Rosenzweig and Wolpin 1993; Townsend 1994; Jayachandran 2006). Below, I use the results to directly rule out persistent productivity impacts of shocks.

\(^{25}\)Equivalently, wage adjustment can also be understood in a first differences framework. It is straightforward to verify that writing equation (6) for \(\ln w_{d,t-1} \) and subtracting from (6) gives:
\[\ln w_{dt} = \ln w_{d,t-1} + \alpha_1 (Pos_{dt} - Pos_{d,t-1}) - \alpha_2 (Neg_{dt} - Neg_{d,t-1}) + I_t + \xi_{dt}, \] where \(I_t \equiv \ln p_t - \ln p_{t-1} \) is the amount of inflation since the previous year. Regardless of the shock, nominal wages adjust by \(I_t \) to maintain real wage levels. With flexible wages, \(\alpha_1 = \Delta_P > 0 \) and \(\alpha_2 = -\Delta_N < 0 \). Since the empirical work uses data from repeated cross-sections over non-consecutive years, it is impossible to implement a specification based on wage differences.
2-year period, there are 9 possible realizations of shock sequences. Modifying equation (6) to include prior shock history gives the following estimating equation for wages:

$$\ln w_{idt} = \beta_0 + \beta_1 S_{dt}^{(-,0)} + \gamma_1 S_{dt}^{(+,0)} + \gamma_2 S_{dt}^{(-,+)} + \gamma_3 S_{dt}^{(+,+)} + \sigma_1 S_{dt}^{(0,-)} + \sigma_2 S_{dt}^{(-,-)} + \phi S_{dt}^{(+,-)} + \psi S_{dt}^{(+,0)} + \sum_{k=2}^{K} \chi_k \tilde{P}_{Pos_{d,t-k}} + X_{idt}' \varphi + \delta_d + \rho_t + \varepsilon_{idt},$$

(7)

where w_{idt} is the nominal wage of worker i in district d in year t. The 8 covariates of the form $S_{dt}^{(j,h)}$ are binary indicators, where j denotes district d’s shock in year $t-1$ and h denotes the district’s shock in year t. The j and h take the values $-, 0,$ and $+$, which correspond to a negative shock, no shock, and a positive shock, respectively. For example $S_{dt}^{(+,0)}$, equals 1 if district d had a positive shock last year and no shock this year, and equals 0 otherwise. The sequence $S_{dt}^{(0,0)}$ is omitted and serves as the reference case. The $\tilde{P}_{Pos_{d,t-k}}$ covariates control for a longer history of lagged positive shocks from periods $t-2$ to $t-K$.26 The vector X_{idt} contains demographic controls and ρ_t are year fixed effects (which absorb p_t). Since the shocks are i.i.d. and so uncorrelated with ε_{idt}, each of the coefficients on the 8 indicator functions is the reduced form average effect of that sequence of shocks on wages relative to $S_{dt}^{(0,0)}$. The year fixed effects absorb the average shock across labor markets in each year, and the shock coefficients are therefore identified off of local variation in rainfall.

Under the null hypothesis of no rigidity, model (7) should reduce to model (6). If there is no shock this year, then wages should be the same as for of $S_{dt}^{(0,0)}$ (regardless of what happened last year) and so $\beta_1 = \psi = 0$. Similarly, if there is a positive shock this year, wages should be higher than $S_{dt}^{(0,0)}$ by Δp and so $\gamma_1 = \gamma_2 = \gamma_3 = \Delta p > 0$;

26These additional controls account for the fact that positive shocks from periods further back in time could also affect current wages. The effect of these shocks is not additive with current positive shocks. Under rigidities, a prior transitory positive shock will only matter if it is not followed by a positive shock in a more recent year; otherwise the wage would adjust upward later anyway, making the older shock irrelevant. The controls are therefore defined as: $P_{Pos_{d,t-k}} = Pos_{d,t-k} \prod_{m=t-k+1}^{t-m} (1 - Pos_{d,m})$. This equals 1 if there was a positive shock $t-k$ periods ago and no positive shock since then (i.e. from periods $t-k+1$ to period t), and equals 0 otherwise. With these controls, the omitted category in the regression becomes no shock this year, no shock last year, and non-positive shocks in the past K years. In the analysis, I show the results with and without these controls. In practice, prior positive shocks often dissipate within a couple years. Note that it is not necessary to add similar controls for a longer history of lagged negative shocks; indeed, the inclusion of such controls in the regressions makes essentially no difference to the results.
if there is a negative shock this year, wages should be lower than \(S_{dt}^{(0,0)} \) by \(\Delta N \) and so \(\sigma_1 = \sigma_2 = \phi = -\Delta < 0 \). Thus, in the absence of rigidities, specification (7) will provide no additional information relative to (6).

On average, real wages will need to adjust down when: i) there is a negative shock in the current year, and ii) when there was a positive shock in the previous year followed by a non-positive shock in the current year. If there is downward nominal rigidity (with sufficiently low inflation), then:

Prediction 1 – Negative Shocks: \(H_0: \sigma_1 < 0, \sigma_2 < 0; \ H_1: \sigma_1 = 0, \sigma_2 = 0 \)

Prediction 2 – Lag Positive Shocks: \(H_0: \phi < 0, \psi = 0; \ H_1: \phi > 0, \psi > 0 \)

The other shock covariates in equation (7) pertain to cases of upward adjustment, and therefore have the same qualitative predictions under rigidities as under the null hypothesis. Specifically, since wages will rise on average under contemporaneous positive shocks, they will be higher than under \(S_{dt}^{(0,0)} \) and so \(\gamma_1, \gamma_2, \gamma_3 > 0 \). In addition, we would expect \(\beta_1 \) to be statistically indistinguishable from 0. Thus, these remaining shock covariates will not distinguish flexible from rigid wages.\(^{28}\)

Since many of the coefficients in model (7) have the same qualitative predictions under rigidity, the shock sequences with common predictions can be combined:

\[
\ln w_{idt} = \beta + \gamma \left[S_{dt}^{(0,+)} + S_{dt}^{(-,+)} + S_{dt}^{(+,+)} \right] + \sigma \left[S_{dt}^{(0,-)} + S_{dt}^{(-,-)} \right] + \phi S_{dt}^{(+,-)} + \psi S_{dt}^{(+,0)} + \sum_{k=2}^{K} \chi_k \tilde{P}_{os_{d,t-k}} + \varphi X_{idt} + \delta_d + \rho_t + \varepsilon_{idt}.
\]

For example, \(\left[S_{dt}^{(0,+)} + S_{dt}^{(-,+)} + S_{dt}^{(+,+)} \right] \) is a binary indicator that equals 1 if the district had a positive shock this year (regardless of what happened last year) and 0 otherwise. Focusing on these 4 categories of shocks as a whole—positive shocks, negative shocks, and the two separate instances of lagged positive shocks followed by a non-positive shock—simplifies the regressions and increases power. In the analysis, the

\(^{27}\)As discussed further below, the tests in 7 will only have power to distinguish rigidities from flexible wages if there is sufficiently little upward pressure on wages from other sources of real wage growth, and additionally in the case of nominal rigidity, sufficiently low inflation. Otherwise, I would fail to reject the null of flexible wages, even though there may be underlying rigidities.

\(^{28}\)As discussed in Section 2, even if employers do not fully adjust wages upward in response to positive shocks, the qualitative predictions under rigidities that \(\phi > 0 \) and \(\psi > 0 \) will still hold; if anything, this would make it more difficult to reject the null in favor of \(H_1 \).
probability of negative or positive shocks is 20% each, so for example, the probability of the sequence $S_{dt}^{(+,+)}$ is only 4%. Cutting the data into 9 separate cells and precisely estimating each cell on its own requires large amounts of data. I will show results from both specifications, but focus on (8) in the main analysis to focus on the categories of predictions and to improve power, especially when adding interaction terms.

The key difference between nominal and real rigidity is that under nominal rigidity, real wage decreases will not be hampered if they are achieved through inflation. In the model in Section 2, this is because the reference wage is in nominal terms. Thus, real wage reductions will be more likely when inflation is higher. To test Proposition 3, the next specification adds interactions of inflation to model (8):

$$w_{idt} = \beta + \gamma^a \left[S_{dt}^{(0,+)} + S_{dt}^{(-,+)} + S_{dt}^{(+,+)} \right] + \gamma^b I_t \times \left[S_{dt}^{(0,+)} + S_{dt}^{(-,+)} + S_{dt}^{(+,+)} \right]$$

$$+ \sigma^a \left[S_{dt}^{(0,-)} + S_{dt}^{(-,-)} \right] + \sigma^b I_t \times \left[S_{dt}^{(0,-)} + S_{dt}^{(-,-)} \right]$$

$$+ \phi^a S_{dt}^{(+,-)} + \phi^b I_t \times S_{dt}^{(+,-)} + \psi^a S_{dt}^{(+,0)} + \psi^b I_t \times S_{dt}^{(+,0)}$$

$$+ \sum_{k=2}^{K} \chi_k \tilde{P} P_{id,t-k} + \varphi X_{idt} + \delta_d + \rho_t + \zeta_{idt}$$

(9)

where $I_t = \ln p_t - \ln p_{t-1}$ is the amount of price inflation between years $t - 1$ and t. As shown below, a district’s local idiosyncratic rainfall shocks are uncorrelated with inflation. Therefore, γ^a, σ^a, ϕ^a, and ψ^a capture the expected difference in the nominal wage between each respective shock category and the omitted category when inflation is 0; the interaction term coefficients, γ^b, σ^b, ϕ^b, and ψ^b, measure how this difference changes on average with an increase in inflation.

Prediction 3 — Inflation: H_0: $\sigma^b = \phi^b = \psi^b = 0$; H_1: $\sigma^b < 0$, $\phi^b < 0$, $\psi^b < 0$

Under the null of flexible wages, inflation should be neutral and so all interaction terms should equal 0. In contrast, if there are downward nominal rigidities, inflation will matter when downward adjustment needs to occur. First, note that if there is positive inflation, nominal wages will rise under $S_{dt}^{(0,0)}$ to keep real wages constant. In the districts where there is a negative shock—for example, the sequence $S_{dt}^{(0,-)}$—employers can keep the nominal wage at the previous year’s level, but achieve a real wage reduction due to the price increase. As a result, with positive inflation, nominal
(and real) wages for $S^{(0,-)}_{dt}$ will be lower than those for $S^{(0,0)}_{dt}$, and this difference will grow with the amount of inflation. If inflation is sufficiently high (i.e. if $I_t \geq \Delta_N$), then real wages will adjust down fully, and this difference will equal $-\Delta_N$. Consequently, in the presence of nominal rigidities, we would expect $\sigma^b < 0$. Similar logic applies to lagged positive shocks: we’d expect $\phi^b < 0$ and $\psi^b < 0$, and sufficiently high inflation will completely eliminate the ratcheting effect from lagged positive shocks. In contrast, inflation should be neutral in the case of upward adjustment to positive shocks; we would expect γ^b to be statistically indistinguishable from 0.

In addition to providing a direct test of Proposition 3, specification (9) is helpful for two reasons. Models (7) and (8) will only have power to distinguish rigidities if there is not upward pressure on the wage due to inflation or real shocks from sources other than rainfall. Second and relatedly, in model (8), if $\sigma = 0$ but inflation is high (i.e. ρ_t is positive and large), then this could mean that nominal wages are rising in absolute terms despite a negative shock. Under the type of nominal rigidities modeled in Section 2—where workers dislike wage cuts, but do not demand consistent wage increases—we would expect this to happen if inflation is high, but not if it is low. For both these reasons, the level effects on the shock covariates in model (9) are important because they isolate wage adjustment in periods of low inflation.

Finally, the following regression examines the impact of shocks on employment:

$$
e_{idt} = \beta^e + \gamma^e \left[S_{dt}^{(0,+)} + S_{dt}^{(-,+)} + S_{dt}^{(+,+)} \right] + \sigma^e \left[S_{dt}^{(0,-)} + S_{dt}^{(-,-)} \right] + \phi^e S_{dt}^{(+,-)} + \psi^e S_{dt}^{(+,0)} + \sum_{k=2}^{K} \chi_k \tilde{P}_{osdt-k} + \varphi \mathbf{X}_{idt} + \delta_d + \rho_t + \nu_{idt}$$

where e_{idt} is the employment level of worker i in district d in year t. Under both the null and alternative hypotheses, employment should rise with positive shocks and fall under negative shocks: $\gamma^e > 0$ and $\sigma^e < 0$.

Testing for employment distortions requires a counterfactual benchmark of what employment would be if wages could adjust downward. The lagged transitory positive shocks enable such a test (as stated in Proposition 2):

Prediction 4 — Employment: H_0: $\phi^e = \sigma^e$, $\psi^e = 0$; H_1: $\phi^e < \sigma^e$, $\psi^e < 0$
Under the sequence $S_{dt}^{(+,0)}$, $\theta_{dt} = \tilde{\theta}^0$ and wages are distorted upward. Under the sequences $S_{dt}^{(0,0)}$ and $S_{dt}^{(-,0)}$, it is also the case that $\theta_{dt} = \tilde{\theta}^0$, but wages are on average (approximately) at the level where they would be if downward adjustment were possible after the lagged positive shock in $S_{dt}^{(+,0)}$. Therefore, ψ^e will capture the effect on employment from the upward wage distortion. Similarly, $S_{dt}^{(0,-)}$ and $S_{dt}^{(-,-)}$ serve as counterfactuals for $S_{dt}^{(+,-)}$—while employment should fall under all these sequences, the fall should be relatively more severe for $S_{dt}^{(+,-)}$ due to the added wage distortion from the lagged positive shock.\(^{29}\) In contrast, under the null, current TFP is all that matters so the lagged positive shocks should not affect current employment.

It would also be interesting to test whether inflation mitigates the employment distortions predicted in H_1. However, because employment data is only available for a small number of years—providing little variation in inflation—it is not possible to examine differential employment effects by inflation (see below).

3.3 Data

Wage and employment data is constructed using two primary datasets. The first source is the rural sample of the Employment/Unemployment rounds of the Indian National Sample Survey (NSS), a nationally representative survey of over 600 Indian districts.\(^{30}\) Households in each district are sampled on a rolling basis over the agricultural year (July to June). The survey elicits daily employment and wage information for each household member over the 7 days preceding the interview. The surveys were conducting during the 1982, 1983, 1987, 1993, 1999, 2003, 2004, 2005, 2007, and 2009 agricultural years.\(^{31}\) The second source is the World Bank Agriculture and Climate dataset, which provides yearly data on 240 Indian districts in 13 states from 1956-1987. The unit of observation is a district-year. Rainfall data is taken from *Terrestrial Pre-
cipitation: 1900-2008 Gridded Monthly Time Series (version 2.01), constructed by the Center for Climatic Research, University of Delaware. Appendix B provides further details on data construction, and Appendix Table 1 provides summary statistics.

3.4 Definition of Shocks

I focus on rainfall in the first month when the monsoon typically arrives in a district (which ranges from May to July). Focusing on rain in the month of expected arrival reflects the fact that both the level of rain and the timeliness of its arrival are important determinants of productivity. To construct shocks, I compute the rainfall distribution for each district separately for each dataset: for the years 1956-1987 for the World Bank data and the years 1982-2009 for the NSS data. A shock is a deviation in rainfall from a district’s usual rainfall level. Specifically, as in Jayachandran (2006), a positive shock is rainfall above the eightieth percentile for the district and a negative shock is rainfall below the twentieth percentile. These discrete cut-offs capture the non-linear relationship between rainfall and productivity and increase power. This illustrated in Appendix Figure 1: rainfall in the upper (lower) tail of the distribution is associated with increased (decreased) yields, while the middle of the rainfall distribution has a relatively flat relationship with yields. Rainfall is serially uncorrelated across years (Appendix Table 2). To allow for correlated shocks across districts in a given year, standard errors are clustered by region-year, using region definitions from the NSS.

4 Results

4.1 Test for Wage Adjustment

Table 1 provides a preliminary test for wage adjustment (as in model (6)), showing results from the World Bank and NSS datasets side by side. The dependent variable

32 Although the cut-offs are symmetric, this does not presume that the effects on TFP are symmetric.

33 Appendix Table 1 provides some evidence for negative serial correlation in rainfall. Clustering standard errors by region makes minor difference in the results, and slightly improves precision in some cases. To be conservative, I cluster by region-year.
is the log nominal daily wage for agricultural work. In both datasets, relative to no shock, nominal wages adjust up when there are positive shocks, but I cannot reject that they are not lower on average when there is a negative shock (Cols. 1 and 4).\footnote{Below, I show that employment does indeed fall sharply when there are negative shocks.} In Cols. 2 and 5, there is some evidence that a positive shock in one year leads to a persistent increase in wages in the following year. Under rigidities, a lagged positive shock has the potential to distort wages upward particularly if the current year’s shock is none or negative. If the current shock is positive, wages would need to adjust up anyway, rendering the prior positive shock irrelevant. Cols. 3 and 6 limit analysis to non-positive shocks in the current year—as expected, this increases the magnitude of the coefficients and lagged positive shocks significantly raise current wages (relative to having no shock last year) in both datasets. In contrast, consistent with rigidity in the downward direction, lagged negative shocks have no persistent wage effects.

Table 2 shows the full test for wage adjustment, jointly accounting for lagged and current shocks, corresponding to specification (8).\footnote{See Appendix Table 3 for the analysis with each of the 9 shock sequences estimated separately.} Cols. 1-2 examine effects in the World Bank data. In Col. 2, relative to the counterfactual of no shock this year and no shock last year, wages are 4.3% higher if there is positive shock this year (row 1, significant at the 1% level). In contrast, consistent with Prediction 1, wages are not significantly lower if there is a negative shock this year: while σ has a negative sign, it is small in magnitude and I cannot reject that it is zero (row 2), and ϕ is actually positive (row 3). In addition, consistent with Prediction 2, lagged positive shocks have persistent wage effects (rows 3 and 4). For example, when there is a positive shock last year and no shock this year, wages are 3.7% higher on average than if last year’s positive shock had not occurred (significant at the 1% level). The pattern of findings is similar in the NSS data (Cols. 3-4). Col. 5 limits analysis to individuals whose primary source of earnings is casual daily labor, with similar results. Col. 6 adds controls for individual covariates and season of the year. Women earn substantially less than men, but landholdings and education have no predictive power for wages.
4.2 Impact of Inflation on Wage Adjustment

To test Prediction 3, I use the World Bank data since it covers 32 years, providing substantial variation in inflation. (The NSS rounds are comprised of 8 years of data, with limited variation in inflation). Inflation is computed from the state-wise Consumer Price Index for Agricultural Labourers in India, published by the Government of India. For each district, I construct inflation as the average of inflation in all states excluding the district’s own state. This captures the component of inflation that is nationally determined (by factors outside the district’s own state) and therefore unaffected by local idiosyncratic shocks. Appendix Table 4 verifies that the district rainfall shocks have no correlation with prices in other states (Cols. 3-4) or inflation in other states (Col. 5)—the coefficients are small in magnitude and insignificant. The correlation between own state inflation and national inflation is 0.70.

Table 3, Cols. 1-2 present estimates of model (9), with interactions of each shock category with the continuous inflation rate in other states. Contemporaneous positive shocks increase wages (row 1), with no differential effects by inflation (row 2). When there are contemporaneous droughts, wages are the same on average as the omitted category when inflation is 0 (row 3). However, when there is positive inflation, nominal (and real) wages are lower under negative shocks than when there is no shock (row 4). Similarly, if there is a positive shock in the previous year, wages are ratcheted upwards when inflation is low (rows 5 and 7); as inflation rises, lagged positive shocks are less likely to have persistent effects on current wages (rows 6 and 8). In Table 3, Cols. 3-4, the interaction term is a binary indicator for inflation above 6%—about the mean inflation rate in the sample. The pattern of results is similar. Inflation has no differential effects when there are positive shocks, but does enable downward real wage adjustment in the categories of shocks where rigidity creates distortions. As indicated in the F-test p-values at the bottom of the table, when inflation is above 6%: real wages adjust downward when there are negative shocks (significant at the 5% level) and I cannot reject that lagged positive shocks have no effect on current wages.

A potential concern is that there could be co-trends in inflation and the impact of
rainfall shocks. For example, if inflation and the adoption of irrigation (which makes crops less reliant on rainfall) both trend upward over time, this could create a spurious correlation. In Appendix Table 5, I conduct two placebo tests to rule out this concern: interactions of the rainfall shocks with a linear time trend (Col. 2) and with a dummy for whether the year is after 1970 (the sample mid-point and the beginning of India’s green revolution, Col. 3) are small and insignificant, indicating that the inflation results are not driven by co-trends.

4.3 Employment Effects

I test for employment effects on all individuals who comprise the potential agricultural labor force: rural workers for whom casual employment or self-employment (i.e. work on their own farm) is a primary or subsidiary activity. 100% of the individuals in the data who report any positive agricultural work fall within this group. Appendix Table 6 verifies that rainfall does not affect the composition of the sample—either through the likelihood of reporting oneself as being in the agricultural labor force (Col. 1) or through migration (Cols. 2-3).

Employment in agriculture is the number of worker-days in the last 7 days (the interview reference period) in which the individual did any agricultural work: own farm work plus hired work on someone else’s farm. Table 4, Panel A indicates that, on average, a positive shock in the previous year lowers agricultural employment in the current year. The estimated decrease in agricultural activity is 0.153 days/week or 8.8% for the average worker (Col. 2) and 0.193 days/week or 11% for landless laborers (Col. 3); these coefficients are significant at the 1% level.

Panel B shows the main specification. Contemporaneous positive shocks (row 1) raise average employment by 0.145 days/week or 8.3%. Contemporaneous droughts (row 3) decrease employment by 0.094 days/week or 5.4%. Consistent with Prediction 4, when a drought is preceded by a positive shock (row 5), employment drops by about 0.254 days/week or 14.6%—more than twice the magnitude of the decrease in row 3. This difference is statistically significant at the 10% level in Col. 1 and at the 5% level.
in Col. 2 (see bottom of table). Similarly, when a year in which there is no shock is preceded by a lagged positive shock (row 7), this lowers employment by 6-7%.

In village labor markets, those who own land have the right to use their own labor on their farms before hiring others. As a result, those with little or no land—who are the net suppliers to the casual daily labor market—are the most likely to be rationed when rigidities bind. Consistent with this, employment decreases are concentrated among those with less land (Col. 3). Finally, there is little evidence that the shocks affect hiring in the non-agricultural sector (Col. 4).

4.4 Separation Failures: Compositional Effects on Employment

A long theoretical literature has pointed out that labor rationing may affect the allocation of labor across firms (Singh, Squire, and Strauss 1986; Benjamin 1992). Specifically, a rationed household’s decision of how much labor to supply and its decision of how much labor to use in production are no longer separable. Households with smaller landholdings—which are more likely to face a binding rationing constraint since they are more reliant on selling labor in the external market—will supply labor more intensively to their own farms. This will lead to a misallocation of labor, with more labor per acre used in small farms compared to large farms.

In Table 5, I test whether rationing affects the composition of labor supply for agricultural households. I examine effects separately for three groups, defined in terms of acres per adult in the household: the landless, who have no or marginal land (<0.01 acres); below median landholding; and above median landholding. I limit analysis to observations in which there was a non-positive shock in the current year, since this is when lagged positive shocks will be most likely to generate rationing.

The dependent variable Col 1. is total worker-days in agriculture—the same measure as in Table 4. Consistent with the Table 4 results, agricultural employment among

36 Acres per adult proxies for how much “excess” labor the household would traditionally supply off its own farm. This is consistent with traditional tests for separation failures, which examine whether, for a given number of acres, households with more adults tend to use more labor on their own farms (e.g., Benjamin 1992, Shapiro 1990, Udry 1996, LaFave and Thomas 2014).
the landless drops substantially. On average, there is no effect on households with below median landholdings; however, this masks substantial changes in labor allocation for these small landholders. Col. 2 examines effects on hired labor on others’ farms. In the year after a positive shock, while the landless experience the largest decrease in wage employment (1.198 days/week), small landholders also experience an estimated decrease of 0.444 days/week or 22% (significant at the 5% level). Col. 3 indicates that, at the same time, small landholders increase the amount of time spent working on their own farms by 0.449 days/week or 18%, significant at the 5% level—this is the key prediction of the separation failures framework. This magnitude corresponds to having approximately one extra acre of land (the sample median) in a typical year. In contrast, large landowners’ labor supply is largely unaffected by these shocks; this makes sense since these households do not sell much labor externally.

5 Alternate Explanations

Could the results be explained by reasons other than downward nominal wage rigidity?

First, positive rainfall shocks may have persistent effects on productivity—for example by improving future soil moisture. However, then future employment should also be higher and inflation should not affect persistence, which contradicts the results.

Second, shocks may affect worker quality. During negative shocks, employers may hire the subset of workers who are better quality—leading to a higher average wage per worker. However, this should not depend on inflation. It also cannot explain why wages do not adjust back down after lagged positive shocks have dissipated.

Third, if positive shocks reduce future labor supply—e.g. through out-migration or inter-temporal substitution of labor—this could explain why wages rise and employment falls in the following year. However, to explain the lack of downward wage adjustment, this would need to (i) occur both in the year after a positive shock and during a contemporaneous drought and (ii) occur when inflation is low but not when it is high. It is unclear why labor supply shifters would operate in this way. In addition,
the NSS data shows no evidence of increased migration after lagged positive shocks or
during contemporaneous negative shocks (Appendix Table 6, Cols. 2-3).

Fourth, if positive shocks enable credit-constrained small farmers to invest in capital, this could decrease future labor demand. To fit the results in Table 6, capital would need to be complementary with own household labor (to explain the increase in own farm labor supply) and substitutable with hired labor (to explain the large decrease in hired labor). In this case, wages for hired manual labor should be lower after a lagged positive shock, not higher. In addition, it is unclear why these effects would occur only when inflation is low. This explanation also doesn’t account for why downward wage adjustment is hindered during negative shocks, again only when inflation is low. Finally, there is little direct evidence that lagged positive shocks lead to an increase in bullocks, tractors, or fertilizer—among the most common and important capital inputs in this setting (Appendix Table 7).

Fifth, measurement error (e.g. due to rounding) is unlikely to drive the results. It is unclear why respondents would be differentially more likely to round wages during negative shocks and the year after positive shocks. In addition, if the wage results simply reflect reporting errors, we should not observe real employment effects.

Finally, efficiency wage models that do not involve nominal rigidities—such as moral hazard, screening, labor turnover, or nutrition—also generate equilibrium unemployment. However, they do not predict that wages will be rigid in response to shocks. For example, none of these models can account for why wages would rise under a positive shock but then not adjust back down once the shock has dissipated, or why this should be influenced by inflation. Similar arguments apply to search friction models that do not incorporate some nominal rigidity. Other models of unemployment—such as implicit insurance, informal unions, or the fairness efficiency wage model presented in Section 2—could be consistent with these results if contracting pertains (at least in part) to the nominal wage. In this paper, I do not take a strong stance on the micro-foundation for rigidity, but rather argue that a model would need to incorporate some degree of nominal rigidity to explain the above findings.
6 Mechanisms: Survey Evidence on Fairness Norms

The presence of rigidities in markets for casual daily labor is perhaps especially surprising given the lack of institutional constraints in these markets. This suggests that non-institutional mechanisms discussed in the literature—such fairness norms against wage cuts—may play a role in maintaining rigid wages. To obtain suggestive evidence on the relevance of fairness considerations, I surveyed in 196 agricultural laborers and 200 employers in 34 villages across 6 districts in the Indian states of Orissa and Madhya Pradesh. Following Kahneman, Knetsch, and Thaler (1986), I presented scenarios about wage setting behavior and asked respondents to rate them as “Very fair”, “Fair”, “Unfair”, or “Very unfair”. Table 6 presents the scenarios and results.

Panel A establishes baseline norms relating to wage cuts in 2 sets of situations. For example, question 1 presents a scenario in which a farmer who used to pay Rs. 120/day lowers the wage after a surge in unemployment after a factory (which used to pay Rs. 100/day) shuts down. The majority of respondents believed it was unfair if the farmer then re-hires a previous employee at Rs. 100 (62%) or if he hires one of the newly unemployed factory workers at Rs. 100 (55%).

Panel B investigates whether norms are anchored on the nominal wage rather than the real wage. Question 3 presents scenarios that involve a 5% real wage cut due to a drought, but vary the level of the nominal wage change. 64% of respondents view a 5% nominal wage cut as unfair. However, if there is 5% inflation and no nominal wage change, 38% view it as unfair. If there is 10% inflation and a 5% nominal wage increase, the percentage viewing this as unfair drops to 9%. Note that similar exercises in the US and Canada have produced similar patterns, with respondents exhibiting some (albeit a lesser) degree of “money illusion” (Kahneman et al. 1986; Shafir et al. 1997).

37 Orissa is one of India’s poorest states, and is dominated by rain-fed paddy. Madhya Pradesh is more affluent, and a large portion of the survey areas is covered by soybeans, a cash crop.
38 Each respondent was asked half the questions to prevent the survey from becoming tedious, and in the case of paired scenarios (1A/1B, 3A/3C, and 9A/9B), was asked only 1 version of the scenario.
39 In this setting, it is common for some local factories to hire casual daily laborers from surrounding villages, drawing from the same labor pool as agricultural employers.
40 In the local vernacular, the term “price of food and clothing” is used to describe inflation. Workers and employers say that this is frequently cited by workers when they are negotiating wages.
Similarly, 29% of respondents view a real wage cut as unfair if it is achieved by reducing an in-kind payment of lunch. This is sharply lower than the reactions to a nominal wage cut of smaller magnitude in Scenario 3A.41

Panel C indicates that several wage setting behaviors associated with market clearing are at odds with expressed fairness norms. For example, 61% of respondents felt it would be unfair if, during a period of high unemployment, a farmer asks workers for their reservation wage and then offers a job to the worker with the lowest reservation wage (Question 5). 63% of respondents think it is unfair for an employer to raise the wage during a period of high labor demand to attract enough workers, and then lower the wage to its previous level in later weeks when demand is lower (Question 7).

Finally, Panel D investigates whether respondents think worker effort depends on fairness perceptions. Question 9 presents a scenario in which a farmer offers a job to a worker in financial distress. If the job is offered at the prevailing wage (which would uphold fairness norms and possibly also show benevolence given the laborer’s distress), 55% percent of respondents say the worker would exert more effort than usual and only 1% state he would exert less effort than usual. In sharp contrast, if the wage is below the prevailing rate, only 6% of respondents state the worker would exert extra effort, while 40% state the worker would exert less effort than usual. Responses to this question were not substantially different between workers and employers.

Of course, survey responses may not reflect the actual actions people take when the stakes are real. The pattern of results in Table 6 simply lends some plausibility to the idea that fairness norms may be a way in which rigid wages are maintained in village labor markets. It is unclear, however, whether such fairness preferences are inherent features of utility or whether they arise endogenously—for example, as a coordinating device among laborers in the presence of incomplete contracting.

Appendix Table 8 tabulates responses to supplementary questions about respon-

41Based on field interviews, the value of the food, when it is provided, usually exceeds Rs. 10. The responses to Scenario 3A vs. 4 are consistent with evidence that there is lower earnings rigidity (and fewer layoffs during recessions) of workers who receive a base salary plus a bonus, presumably because bonuses can be more easily cut during downturns (e.g. Kahn 1997).
dents’ own experiences and behavior. For example, 100% of workers and employers state that in their memory, there has not been a single year during which the prevailing nominal agricultural wage for a given season was lower than that in the previous year (Questions 1 and 6). 74% of laborers report having been involuntarily unemployed in the past (Question 2), and 95% of employers claim that they have never hired a worker at a wage below the prevailing wage during the lean season (Question 8).

7 Conclusion

This paper tests for downward nominal wage rigidity in markets for casual daily agricultural labor. First, there is asymmetric wage adjustment: nominal wages rise in response to positive shocks but do not fall during negative shocks. Second, after transitory positive shocks have dissipated, nominal wages do not return to previous levels—they remain high in future years. Third, inflation moderates these effects: when inflation is higher, real wages are more likely to fall during droughts and after transitory positive shocks. Fourth, wage distortions generate employment distortions, creating boom and bust cycles: employment is 9% lower in the year after a transitory positive shock than if the positive shock had not occurred. Fifth, consistent with the misallocation of labor across farms, households with small landholdings increase labor supply to their own farms when they are rationed out of the external labor market.

In addition to its broad implications for unemployment and business cycle dynamics, wage rigidity has particular relevance for developing country labor markets. One focus of the development literature has been that shocks cause shifts in the production frontier, leading to volatility in income and consumption. In the presence of wage rigidity, volatility has an additional implication: production may often not be at the frontier because labor markets do not adjust fully in each period. As implied by the employment results, this means rigidities may lower the levels and further increase the

42 During informal interviews, respondents stated that wages do vary within a year based on the season/tasks—for example, the transplanting, weeding, harvesting, and lean seasons may each have a distinct wage. They stated that the wage for each season takes as a starting (“reference”) point the wage during that season in the previous year.
volatility of output and income. In addition, the evidence indicates that the landless and marginal farmers—who are the poorest and most vulnerable workers in this setting—bear the brunt of the labor market effects. The findings in Section 4.4 suggest that this has not only distributional consequences—it can impact labor allocation, and consequently is another channel by which rigidities affect aggregate output.

Finding rigidities in casual daily labor markets is perhaps surprising, given the lack of formal institutional constraints in this setting. The survey evidence suggests that agricultural workers and employers: view nominal wage cuts as unfair; are considerably less likely to regard real wage cuts as unfair if they are achieved through inflation; and believe that nominal wage cuts cause effort reductions. However, it is unclear whether such fairness preferences are inherent features of utility or whether they arise endogenously—for example, as coordinating device among workers in a setting where formal contracting or unions are difficult. Further exploration of the microfoundations for rigidities—such fairness norms and the underlying mechanisms that give rise to them—is necessary before one can fully understand the efficiency and welfare implications of wage rigidity.

References

20. Fink, Gunther, B. Kelsey Jack, and Felix Masiye. 2014. “Seasonal Credit Con-

31

Figure 1 – Evolution of the Prevailing Nominal Daily Wage in an Indian Village

Notes:
1. This motivational figure plots the prevailing daily nominal wage for ploughing in the Indian village of Tinur, Tamil Nadu during the month of April from 1958-1971. These wages were reported in *Agricultural Wages in India*, published by the Government of India.
2. The letters “D” and “H” signify years in which there was a drought (rain below the 20th percentile of the district’s historical rainfall distribution) or very good rainfall (rain above the 80th percentile of the district’s historical rainfall distribution), respectively.

Figure 2 – Distributions of Wage Changes

Notes:
1. The figures plot year-to-year percentage changes in agricultural wages in the World Bank Climate and Agriculture dataset. The unit of observation is a district-year, with data on 256 districts from 1956-1987.
2. Nominal wage changes are shown for the full sample (7,680 observations).
3. Real wages are computed as the nominal wage divided by the state CPI for agricultural workers, for the years in which state CPI data is available (6,850 observations).
4. Wage changes are top coded at 50% and bottom coded at –50%.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All observations</td>
<td>All observations</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Positive shock this year</td>
<td>0.021</td>
</tr>
<tr>
<td>Negative shock this year</td>
<td>-0.004</td>
</tr>
<tr>
<td>Positive shock last year</td>
<td>0.017</td>
</tr>
<tr>
<td>Negative shock last year</td>
<td>0.007</td>
</tr>
<tr>
<td>Observations: district-years</td>
<td>7,680</td>
</tr>
<tr>
<td>Observations: individual-years</td>
<td>--</td>
</tr>
</tbody>
</table>

Notes:
1. The dependent variable is the log of the nominal daily wage for casual agricultural work.
2. A positive (negative) shock is defined as rainfall in the first month of the monsoon above (below) the 80th (20th) percentile of the district’s usual distribution. No shock is rainfall between the 20th-80th percentile of the district’s usual distribution.
3. Cols (3) and (6) restrict analysis to observations where there was a negative shock or no shock this year.
4. All regressions include district and year fixed effects. Standard errors are clustered by region-year.
Table 2

Test for Wage Adjustment

Dependent Variable: Log Nominal Daily Agricultural Wage

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full sample (1)</td>
<td>Full sample (2)</td>
</tr>
<tr>
<td>Last year's shock</td>
<td>This year's shock</td>
<td></td>
</tr>
<tr>
<td>None, Negative, or Positive</td>
<td>Positive</td>
<td>0.026 (0.009)***</td>
</tr>
<tr>
<td>None or Negative</td>
<td>Negative</td>
<td>-0.011 (0.010)</td>
</tr>
<tr>
<td>Positive</td>
<td>Negative</td>
<td>0.035 (0.020)*</td>
</tr>
<tr>
<td>Positive</td>
<td>None</td>
<td>0.020 (0.010)**</td>
</tr>
</tbody>
</table>

Female worker | -0.213 (0.028)*** |
Household land size (acres) | 0.0000 (0.0003) |
Education | 0.0025 (0.0037) |
Prior shock history controls? | No | Yes | No | Yes | Yes | Yes |
Observations: district-years | 7,680 | 7,680 | -- | -- | -- | -- |
Observations: individual-years | -- | -- | 59,243 | 59,243 | 51,697 | 52,278 |
Dependent variable mean | 1.21 | 1.21 | 3.39 | 3.39 | 3.39 | 3.39 |

Notes:
1. The dependent variable is the log of the nominal daily wage for casual agricultural work.
2. A positive (negative) shock is defined as rainfall in the first month of the monsoon above (below) the 80th (20th) percentile of the district’s usual distribution. No shock (“None”) is rainfall between the 20th-80th percentile of the district’s usual distribution.
3. The shock sequences are presented as the shock in the previous year and the shock in the current year. Each of the 4 shock covariates are indicators that equal 1 if the sequence of shocks was realized and zero otherwise. The omitted category in each regression is {None or Negative} last year and {None} this year.
4. All regressions include district and year fixed effects. Cols. (2) and (4)-(6) add controls for positive shocks 2 years ago and 3 years ago. Col. (6) includes fixed effects for quarter of the year. Col. (5) limits analysis to individuals whose primary source of earnings is casual daily labor.
5. Standard errors are clustered by region-year.
Table 3
Impact of Inflation on Wage Adjustment
Dependent Variable: Log Nominal Daily Agricultural Wage

<table>
<thead>
<tr>
<th>Last year's shock</th>
<th>This year's shock</th>
<th>Inflation measure:</th>
<th>Inflation measure:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inflation rate</td>
<td>Indicator: Inflation > 6%</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>1 Any</td>
<td>Positive</td>
<td>0.027 (0.009)***</td>
<td>0.032 (0.010)***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.043 (0.010)***</td>
<td>0.047 (0.011)***</td>
</tr>
<tr>
<td>2 Interaction</td>
<td></td>
<td>0.002 (0.095)</td>
<td>-0.016 (0.019)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.009 (0.094)</td>
<td>-0.013 (0.019)</td>
</tr>
<tr>
<td>3 None or Negative</td>
<td>Negative</td>
<td>0.005 (0.012)</td>
<td>0.006 (0.014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000 (0.012)</td>
<td>0.001 (0.013)</td>
</tr>
<tr>
<td>4 Interaction</td>
<td></td>
<td>-0.230 (0.107)**</td>
<td>-0.038 (0.021)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.184 (0.104)*</td>
<td>-0.031 (0.020)</td>
</tr>
<tr>
<td>5 Positive</td>
<td>Negative</td>
<td>0.067 (0.025)***</td>
<td>0.069 (0.028)***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.084 (0.025)***</td>
<td>0.085 (0.029)***</td>
</tr>
<tr>
<td>6 Interaction</td>
<td></td>
<td>-0.481 (0.203)***</td>
<td>-0.083 (0.037)***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.479 (0.205)***</td>
<td>-0.082 (0.037)***</td>
</tr>
<tr>
<td>7 Positive</td>
<td>None</td>
<td>0.041 (0.014)***</td>
<td>0.042 (0.015)***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.057 (0.014)***</td>
<td>0.057 (0.015)***</td>
</tr>
<tr>
<td>8 Interaction</td>
<td></td>
<td>-0.257 (0.096)***</td>
<td>-0.047 (0.019)***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.248 (0.097)***</td>
<td>-0.045 (0.020)***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shock history controls</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations: district-years</td>
<td>7680</td>
<td>7680</td>
</tr>
<tr>
<td>R2</td>
<td>0.947</td>
<td>0.948</td>
</tr>
<tr>
<td>F-test p-value: Coefficient 3 + Coefficient 4 = 0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>F-test p-value: Coefficient 5 + Coefficient 6 = 0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>F-test p-value: Coefficient 7 + Coefficient 8 = 0</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Notes:
1. The dependent variable is the log of the nominal wage for casual daily agricultural work. Observations are from the World Bank data.
2. A positive (negative) shock is defined as rainfall in the first month of the monsoon above (below) the 80th (20th) percentile of the district’s usual distribution. No shock ("None") is rainfall between the 20th-80th percentile of the district’s usual distribution.
3. The shock sequences are presented as the shock in the previous year and the shock in the current year. Each of the 4 shock covariates (rows 1, 3, 5, 7) is an indicator that equals 1 if the sequence of shocks was realized and zero otherwise. The omitted category in each regression is {None or Negative} last year and {None} this year.
4. The remaining covariates (rows 2, 4, 6, 8) are interactions of the shock sequence indicators with a measure of inflation. Inflation is the percentage change in the state CPI for Agricultural Labourers, averaged across all states excluding the district's own state; for 1956 and 1957, the national CPI is used because state CPI data is unavailable. The inflation measure in Cols. (1)-(2) is the continuous inflation rate, and in Cols. (3)-(4) is a binary indicator for inflation above 6%.
5. All regressions include district and year fixed effects. Cols. (2) and (4) add controls for positive shocks 2 years ago and 3 years ago. Standard errors are clustered by region-year.
Table 4
Test for Employment Effects

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Total worker-days in agriculture</th>
<th>Non-agri employment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Panel A: Simple specification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive shock last year</td>
<td>-0.117</td>
<td>-0.153</td>
</tr>
<tr>
<td></td>
<td>(0.051)**</td>
<td>(0.051)**</td>
</tr>
<tr>
<td>Positive shock last year x Acres per adult in HH</td>
<td>0.067</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>(0.054)</td>
<td></td>
</tr>
<tr>
<td>Panel B: Full specification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last year's shock</td>
<td>This year's shock</td>
<td></td>
</tr>
<tr>
<td>1 Any</td>
<td>Positive</td>
<td>0.145</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.063)**</td>
</tr>
<tr>
<td>2 Interaction with acres per adult in HH</td>
<td>0.053</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.068)</td>
</tr>
<tr>
<td>3 None or Negative</td>
<td>Negative</td>
<td>-0.094</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.055)*</td>
</tr>
<tr>
<td>4 Interaction with acres per adult in HH</td>
<td>0.136</td>
<td>-0.020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.069)**</td>
</tr>
<tr>
<td>5 Positive</td>
<td>Negative</td>
<td>-0.254</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.084)**</td>
</tr>
<tr>
<td>6 Interaction with acres per adult in HH</td>
<td>0.212</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.060)**</td>
</tr>
<tr>
<td>7 Positive</td>
<td>None</td>
<td>-0.099</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.066)</td>
</tr>
<tr>
<td>8 Interaction with acres per adult in HH</td>
<td>0.027</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.063)</td>
</tr>
<tr>
<td>Acres per adult in HH</td>
<td>0.709</td>
<td>-0.386</td>
</tr>
<tr>
<td>(Acres per adult in HH)^2</td>
<td>(0.118)**</td>
<td>(0.043)**</td>
</tr>
<tr>
<td>Previous shock history controls?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>F-test p-value: Coefficient 3 = Coefficient 5</td>
<td>0.087*</td>
<td>0.045**</td>
</tr>
<tr>
<td>Observations: individual-years</td>
<td>632,327</td>
<td>632,327</td>
</tr>
<tr>
<td>Dependent variable mean</td>
<td>1.74</td>
<td>1.74</td>
</tr>
</tbody>
</table>

Notes:
1. The dependent variable inCols. (1)-(3) is the number of days in the last 7 days in which the worker did any agricultural work (own farm work plus hired out work). In Col. (4) it is the number of days in the last 7 days in which the worker was hired for any non-agricultural work. Observations are from the NSS data.
2. A positive (negative) shock is defined as rainfall in the first month of the monsoon above (below) the 80th (20th) percentile of the district’s usual distribution. No shock (“None”) is rainfall between the 20th-80th percentile of the district’s usual distribution.
3. In Panel A, the shock covariate is a dummy for a positive shock in the previous year.
4. In Panel B, each of the 4 shock covariates (rows 1, 3, 5, 7) is an indicator that equals 1 if the sequence of shocks (presented as the shock in the previous year and the shock in the current year) was realized and equals 0 otherwise. The omitted category in these regressions is {None or Negative} last year and {None} this year. Each covariate is interacted with number of acres per adult in the household (rows 2, 4, 6, 8).
5. All regressions include district and year fixed effects. Cols. (2) and (4) add controls for positive shocks 2 years ago and 3 years ago. Standard errors are clustered by region-year.
Table 5

Compositional Changes in Labor Allocation

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Total worker-days in agriculture</th>
<th>Worker-days as wage laborer</th>
<th>Worker-days on own farm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>1. Positive shock last year</td>
<td>-1.729 (0.503)**</td>
<td>-1.198 (0.438)**</td>
<td>-0.531 (0.299)*</td>
</tr>
<tr>
<td>2. Positive shock last year x Below median landholding</td>
<td>1.734 (0.625)**</td>
<td>0.754 (0.520)</td>
<td>0.980 (0.306)**</td>
</tr>
<tr>
<td>3. Positive shock last year x Above median landholding</td>
<td>1.289 (0.585)**</td>
<td>1.351 (0.545)**</td>
<td>-0.058 (0.410)</td>
</tr>
<tr>
<td>Below median landholding</td>
<td>-1.017 (0.308)**</td>
<td>-2.107 (0.263)**</td>
<td>1.092 (0.176)**</td>
</tr>
<tr>
<td>Above median landholding</td>
<td>-0.618 (0.373)*</td>
<td>-4.171 (0.358)**</td>
<td>3.549 (0.234)**</td>
</tr>
</tbody>
</table>

F-test p-value: Coefficient 1 + Coefficient 2 = 0
- 0.989
- 0.046**
- 0.047**

Observations: household-years
166,003
166,003
166,003

Dependent variable mean: Landless & marginal
5.152
5.016
0.136

Dependent variable mean: Below median land
4.179
2.770
1.410

Dependent variable mean: Above median land
5.022
0.882
4.140

Notes:

1. The table decomposes agricultural employment in the past 7 days. The dependent variable in Col. (2) is the number of worker-days household members worked as hired casual wage laborers for others; in Col. (3) it is the number of worker-days household members worked on their own land; and Col. (1) is the total number of worker-days in agriculture (own farm work plus hired out work). Observations are from the NSS data.

2. A positive shock is defined as rainfall in the first month of the monsoon above the 80th percentile of the district’s usual distribution. The sample is comprised of observations in which there is no positive shock this year.

3. The regressions interact the lagged positive shock covariate with binary indicators for landholding categories. The omitted category is landless and marginal landowners—those with less than 0.01 acres per adult in the household. The median landholding is approximately 0.4 acres per adult in the household.

4. All regressions include district and year fixed effects. Standard errors are clustered by region-year.
Table 6: Fairness Norms in Rural Labor Markets

Proportion of respondents saying the scenario is "unfair" or "very unfair"

<table>
<thead>
<tr>
<th>Panel A: Acceptability of Wage Reductions</th>
<th>All</th>
<th>Laborers</th>
<th>Employers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A farmer hires a laborer to weed his land for 1 day at a wage of Rs. 120. There is a local factory that pays Rs. 100 per day. One month later, the factory shuts down and many people in the area become unemployed. A) … After this, the farmer decides to do a second weeding and hires the same laborer as before at a wage of Rs. 100.</td>
<td>0.62</td>
<td>0.68</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>B) … After this, the farmer decides to do a second weeding and hires one of the newly unemployed laborers at a wage of Rs. 100.</td>
<td>0.55</td>
<td>0.59</td>
</tr>
<tr>
<td>2 A farmer usually pays laborers Rs. 120 per day. His son becomes sick and the medical bills are very expensive. He lowers the wage to Rs. 110 per day.</td>
<td>0.79</td>
<td>0.71</td>
<td>0.87</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Money Illusion</th>
<th>All</th>
<th>Laborers</th>
<th>Employers</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Last year, the prevailing wage in a village was Rs. 100 per day. This year, the rains were very bad and so crop yields will be lower than usual. A) … There has been no change in the cost of food and clothing. Farmers decrease this year’s wage rate from Rs. 100 to Rs. 95 per day.</td>
<td>0.64</td>
<td>0.71</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>B) …. The price of food and clothing has increased so that what used to cost Rs. 100 before now costs Rs. 105. Farmers keep this year’s wage rate at Rs. 100.</td>
<td>0.38</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>C) … The price of food and clothing has increased since last year, so that what used to cost Rs. 100 before now costs Rs. 110. Farmers increase this year’s wage rate from Rs. 100 to Rs. 105.</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>4 A farmer usually pays laborers Rs. 100 per day plus food. There is not much work in the area and many laborers are looking for work. He stops providing food but continues to pay Rs. 100.</td>
<td>0.29</td>
<td>0.33</td>
<td>0.24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel C: Market Clearing Mechanisms</th>
<th>All</th>
<th>Laborers</th>
<th>Employers</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 A farmer needs to hire a laborer to plough his land. There is not much work in the area at that time, and 5 laborers want the job. The farmer asks each of them to state the lowest wage at which they are willing to work, and then hires the laborer who stated the lowest wage.</td>
<td>0.61</td>
<td>0.78</td>
<td>0.44</td>
</tr>
<tr>
<td>6 A farmer needs to hire a laborer to plough his land. The prevailing rate in the area is Rs. 120 per day. The farmer knows there is a laborer who needs money to meet a family expense and is having difficulty finding work. The farmer offers the job to that laborer at Rs. 110 per day.</td>
<td>0.53</td>
<td>0.47</td>
<td>0.59</td>
</tr>
<tr>
<td>7 It is harvest time and all farmers in a village pay laborers Rs. 120 per day. One large farmer decides to harvest some of his land immediately and needs to hire 10 laborers. To find enough laborers, he pays them Rs. 150 per day for one week. In the following weeks, he decides to harvest the rest of his land, and re-hires 5 of the laborers at Rs. 120 per day.</td>
<td>0.63</td>
<td>0.70</td>
<td>0.57</td>
</tr>
<tr>
<td>8 There are 20 landowners in a village. The prevailing wage during ploughing time is Rs. 120. 10 landowners want to attract extra laborers, and they increase the wage they pay to Rs. 130. The other 10 landowners don’t need much labor and maintain the wage at Rs. 120.</td>
<td>0.45</td>
<td>0.52</td>
<td>0.39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel D: Fairness Norms and Effort</th>
<th>More carefully than usual</th>
<th>With the normal amount of care</th>
<th>Less carefully than usual</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Rs. 120</td>
<td>0.55</td>
<td>0.44</td>
<td>0.01</td>
</tr>
<tr>
<td>B) Rs. 100</td>
<td>0.06</td>
<td>0.54</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Notes:
1. The sample is comprised of 196 casual laborers and 200 landowning farmers (employers) from 34 villages across 6 districts in the states of Orissa and Madhya Pradesh. Respondents were working males aged 20-80.
2. Each respondent only received half the scenarios presented in the table. In the case of paired scenarios (questions 1A/1B, 3A/3C, and 9A/9B), each respondent was asked only 1 scenario in each pair. They were asked to rate each scenario as “Very fair”, “Fair”, “Unfair”, or “Very Unfair”. The table reports the proportion selecting “Unfair” or “Very Unfair”.

40
Appendix A: Model Proofs

A.1: Proof of Lemma 1 (Market Clearing in Benchmark Case)

First, I show that the market clearing condition must hold in the benchmark case.

(i) Suppose there is excess labor supply: \(JL^* < \frac{1}{\varphi} u \left(\frac{w^*}{p} \right) \). Then firm \(j \) can cut its wage to some \(w^* - \epsilon \) and still hire \(L^* \) workers. To see this, define \(\delta \) as the slack in the market:

\[
\delta \equiv JL^* - \frac{1}{\varphi} u \left(\frac{w^*}{p} \right).
\]

At wage \(w_j = w^* - \epsilon \), by the allocation mechanism for workers, the supply of workers available to \(j \) equals the mass of workers that would be willing to work for \(j \) minus the mass of workers employed by the other (higher-wage) firms:

\[
L_j^{\text{avail}} = \max \left\{ \frac{1}{\varphi} u \left(\frac{w^*-\epsilon}{p} \right) - (J-1)L^*, \ 0 \right\}
\]

Firm \(j \) can cut wages by \(\epsilon \) and still hire \(L^* \) workers as long as \(\epsilon \) satisfies the following condition:

\[
L^* \leq \frac{1}{\varphi} u \left(\frac{w^*-\epsilon}{p} \right) - (J-1)L^* \implies \frac{1}{J} \left[\frac{1}{\varphi} u \left(\frac{w^*}{p} \right) - \delta \right] \leq \frac{1}{\varphi} u \left(\frac{w^*-\epsilon}{p} \right) - \frac{J-1}{J} \left[\frac{1}{\varphi} u \left(\frac{w^*}{p} \right) - \delta \right]
\]

\[
\implies \frac{1}{\varphi} u \left(\frac{w^*}{p} \right) - \delta \leq \frac{1}{\varphi} u \left(\frac{w^*-\epsilon}{p} \right).
\]

Such a wage cut will strictly decrease \(j \)'s wage bill while holding revenue constant, thereby strictly increasing profits. Thus, there cannot be excess labor supply.

(ii) Suppose there is excess labor demand: \(JL^* > \frac{1}{\varphi} u \left(\frac{w^*}{p} \right) \). This implies that each firm is hiring strictly less labor than demanded by its first order condition. If firm \(j \) raises its wage infinitesimally above \(w^* \) to \(w^* + \epsilon \), it will be able to fully satisfy its labor demand by the allocation mechanism. In what follows, denote \(L_j^{\text{FOC}} (w_j) \) as \(j \)'s labor demand under wage \(w_j \) (this is determined by \(j \)'s first order condition, (3)). This upward wage deviation
will be profitable if profits from $w^* + \epsilon$ are higher than profits from w^*, i.e. if the following inequality holds:

$$\theta pf \left(L_j^{FOC} (w^* + \epsilon) \right) - (w^* + \epsilon) L_j^{FOC} (w^* + \epsilon) > \theta pf \left(\frac{1}{J\phi} u \left(\frac{w^*}{p} \right) \right) - w^* \frac{1}{J\phi} u \left(\frac{w^*}{p} \right).$$

Note that:

$$\lim_{\epsilon \to 0} \theta pf \left(L_j^{FOC} (w^* + \epsilon) \right) - (w^* + \epsilon) L_j^{FOC} (w^* + \epsilon) = \theta pf \left(L_j^{FOC} (w^*) \right) - w^* L_j^{FOC} (w^*)$$

$$> \theta pf \left(\frac{1}{J\phi} u \left(\frac{w^*}{p} \right) \right) - w^* \frac{1}{J\phi} u \left(\frac{w^*}{p} \right).$$

The equality on the second line follows from the continuity of the first order condition and continuity of $f(\bullet)$. The inequality on the third line is due to the fact that at w^*, $L_j^{FOC} (w^*)$ maximizes profits. This implies that there exists some $\bar{\epsilon} > 0$ such that for all $\epsilon < \bar{\epsilon}$, profits from deviating to $w^* + \epsilon$ will be higher than maintaining wages at w^*.

Next, I show that no firm will deviate from the w^* pinned down by conditions (3) and (4).

(i) Suppose firm j raises its wage to some $w_j = w^* + \epsilon$. It follows from the first order condition, (3), that the firm will demand labor $L_j^{FOC} < L^*$. However, it could have hired L_j^{FOC} workers under wage w^*, with a lower wage bill and higher profits. This deviation cannot be profitable.

(ii) Suppose firm j lowers its wage to some $w_j = w^* - \epsilon$. The supply of workers available to j equals the mass of workers that would be willing to work for j minus the mass of workers employed by the other (higher-wage) firms:

$$L_j^{Avail} = \max \left\{ \frac{1}{\phi} u \left(\frac{w^* - \epsilon}{p} \right) - (J - 1)L^* , 0 \right\}$$

$$= \max \left\{ \frac{1}{\phi} u \left(\frac{w^* - \epsilon}{p} \right) - \frac{J-1}{J\phi} u \left(\frac{w^*}{p} \right) , 0 \right\}.$$
(a) If $L_j^{\text{Avail}} = 0$, then $\pi_j \left(w^* - \epsilon, L_j^{\text{Avail}} \right) = 0$ and profits are trivially weakly higher from maintaining w^*.

(b) If $L_j^{\text{Avail}} > 0$, then profits from maintaining w^* will be higher for J sufficiently large. First, rewrite

$$\pi_j \left(w^*, L^* \right) - \pi_j \left(w^* - \epsilon, L_j^{\text{Avail}} \right) = p\theta \left[f \left(L^* \right) - f \left(L_j^{\text{Avail}} \right) \right] - \frac{\epsilon}{\bar{\phi}} u \left(\frac{w^*}{p} \right)$$

where $F(J)$ is the difference in output from L^* and L_j^{Avail}. Note that:

$$\frac{\partial}{\partial J} F(J) = \frac{1}{J^2 \bar{\phi}} u \left(\frac{w^*}{p} \right) p\theta \left[\frac{f'}{\bar{\phi}} \left(L_j^{\text{Avail}} \right) - \frac{f'}{\bar{\phi}} \left(L^* \right) \right] > 0$$

by the concavity of $f(\bullet)$. Next, define \tilde{J} as:

$$F(1) = \frac{\epsilon}{\bar{\phi}} u \left(\frac{w^*}{p} \right) .$$

Cutting wages to $w^* - \epsilon$ will not be a profitable deviation for any J such that $F(J) - \frac{\epsilon}{\bar{\phi}} u \left(\frac{w^*}{p} \right) > 0$. The following shows this will hold for any $J \geq \tilde{J}$. For any positive number X:

$$F(\tilde{J} + X) > F(\tilde{J}) \quad \text{(since } \frac{\partial}{\partial J} F(J) > 0)$$

$$> F(1) \quad \text{(since } \frac{\partial}{\partial J} F(J) > 0)$$

$$= \frac{\epsilon}{\bar{\phi}} u \left(\frac{w^*}{p} \right) \quad \text{(by definition of } \tilde{J})$$

$$> \frac{\epsilon}{(J + X)^2 \bar{\phi}} u \left(\frac{w^*}{p} \right) .$$

Thus for J sufficiently large, profits from maintaining w^* will be higher than from deviating to $w^* - \epsilon$. This is consistent with the assumption stated in the model that J is arbitrarily large. ■

A.2: Proof of Proposition 1 (Asymmetric Adjustment to Shocks)

I prove each of the two parts of Proposition 1 in turn.

(i) Define $\theta'_R = \frac{w_{t-1}^R - 1}{p \bar{\phi} \left(\frac{w_{t-1}}{J^{-1} + \bar{\phi}} u \left(\frac{w_{t-1}^R - 1}{p} \right) \right)}$. For $\theta \in (\theta'_R, \theta_R)$, no firm will deviate...
from wage offer \(\bar{w}_{t-1} \):

(a) Suppose firm \(j \) deviates by raising the wage to \(w_j > \bar{w}_{t-1} \). It follows from the first order condition, (5), that the firm will demand labor \(L_{j \text{FOC}} < L \). However, it could have hired \(L_{j \text{FOC}} \) workers under wage \(\bar{w}_{t-1} \), with a lower wage bill and higher profits. This deviation cannot be profitable.

(b) Suppose firm \(j \) deviates by lowering the wage to \(w_j \in (\lambda \bar{w}_{t-1}, \bar{w}_{t-1}) \).

By the firm’s first order condition (5), \(j \)'s labor demand will increase, but the supply of labor available to \(j \) will decrease to some \(L_{j \text{avail}} \):

\[
0 < L_{j \text{avail}} < L(\theta, p, \bar{w}_{t-1}).
\]

Then:

\[
\pi_j (w_j, L_{j \text{avail}}) = p \theta f(\lambda L_{j \text{avail}}) - w_j L_{j \text{avail}} < p \theta f(\lambda L_{j \text{avail}}) - \bar{w}_{t-1} (\lambda f(\lambda L_{j \text{avail}})) \quad \text{(since } w_j > \bar{w}_{t-1} \lambda) \\
< p \theta f(\bar{L}(\theta, p, \bar{w}_{t-1})) - \bar{w}_{t-1} \bar{L}(\theta, p, \bar{w}_{t-1}) \quad \text{(by FOC at } \bar{w}_{t-1}) \\
= \pi_j (\bar{w}_{t-1}, \bar{L}(\theta, p, \bar{w}_{t-1})).
\]

This deviation is not profitable.

(c) Suppose firm \(j \) deviates by lowering the wage to \(w_j \leq \lambda \bar{w}_{t-1} \).

Since \(\theta > \theta' _R \), the definition of \(\theta' _R \) above implies:

\[
\bar{L}(\theta, p, \bar{w}_{t-1}) > \frac{1}{(J-1)\phi} u \left(\frac{\lambda \bar{w}_{t-1}}{p} \right).
\]

As a result, the supply of labor available to \(j \) is:

\[
L_{j \text{avail}} = \max \left\{ \frac{1}{\phi} u \left(\frac{w_j}{p} \right) - (J-1)\bar{L}, 0 \right\} \\
\leq \max \left\{ \frac{1}{\phi} u \left(\frac{\lambda \bar{w}_{t-1}}{p} \right) - (J-1)\bar{L}, 0 \right\} \quad \text{(since } w_j \leq \bar{w}_{t-1} \lambda) \\
= 0 \quad \text{(by the expression for } \bar{L} \text{ above)}.
\]

The profits from cutting to \(w_j \leq \lambda \bar{w}_{t-1} \) are therefore 0. This deviation is not profitable.

The first order condition (5) implies that for \(\theta \in (\theta'_R, \theta_R) \), \(\bar{L}(\theta, p, \bar{w}_{t-1}) < L(\theta_R, p, \bar{w}_{t-1}) \). This is because the wage remains fixed at \(\bar{w}_{t-1} \), while \(\theta < \theta_R \), and \(f(\bullet) \) is concave. Since by the definition of \(\theta_R \), \(J \bar{L}(\theta_R, p, \bar{w}_{t-1}) = \)
\[\frac{1}{\phi} u \left(\frac{\bar{w}_{t-1}}{p} \right), \] this implies that for \(\theta \in (\theta'_R, \theta_R) \), \(J \bar{I} (\theta, p, \bar{w}_{t-1}) < \frac{1}{\phi} u \left(\frac{\bar{w}_{t-1}}{p} \right) \).

Thus, there will be excess labor supply in the market.

Finally, note that \(\lim_{\lambda \to 0} \theta'_R = \lim_{\lambda \to 0} \bar{w}_{t-1} p f' \left(\frac{1}{(J-1)p} u \left(\frac{\bar{w}_{t-1}}{p} \right) \right) = 0 \).

(ii) The definition of \(\theta_R \) and Lemma 1 imply: \(\bar{w}(\theta_R, p, \bar{w}_{t-1}) = w^*(\theta_R, p) = \bar{w}_{t-1} \). Since \(\frac{\partial w^*(\theta, p)}{\partial \theta} > 0 \) for all \(\theta \), \(w^*(\theta_R, p) \geq \bar{w}_{t-1} \) for \(\theta \geq \theta_R \). The below arguments show that for \(\theta \geq \theta_R \), no firm will want to deviate from \(\bar{w}(\theta, p, \bar{w}_{t-1}) = w^*(\theta, p) \):

(a) Suppose firm \(j \) raises its wage to some \(w_j = \bar{w}(\theta, p, \bar{w}_{t-1}) + \epsilon > \bar{w}_{t-1} \). Since \(w_j > \bar{w}_{t-1} \), \(j \)'s first order condition (5) coincides with the benchmark case. This deviation cannot be profitable by the same logic as part (i) of the proof of Proposition 1 above.

(b) Suppose firm \(j \) lowers its wage to some \(w_j = \bar{w}(\theta, p, \bar{w}_{t-1}) - \epsilon \geq \bar{w}_{t-1} \). (Note that this implies \(\theta > \theta_R \). The firm’s choice of labor demand at \(w_j \) is given by first order condition (5). This deviation cannot be profitable by the same logic as part (ii) of the proof of Proposition 1 above.

(c) Suppose firm \(j \) lowers its wage to some \(w_j = \bar{w}(\theta, p, \bar{w}_{t-1}) - \epsilon < \bar{w}_{t-1} \). Define \(L_{j}^{FOC,\lambda} \) implicitly as: \(p\theta f' \left(\lambda L_{j}^{FOC,\lambda} \right) = w_j \). In addition, define \(L_{j}^{FOC,B} \) implicitly as: \(p\theta f' \left(L_{j}^{FOC,B} \right) = w_j \). Note that \(L_{j}^{FOC,\lambda} < L_{j}^{FOC,B} \) because of the assumption in the model that \(f'(\overline{L}) > \lambda f' \left(\lambda \overline{L} \right) \) for \(\lambda < 1 \). At \(w_j \), \(j \)'s optimal labor demand will correspond to \(L_{j}^{FOC,\lambda} \). There are 2 possibilities:

1) If \(L_{j}^{FOC,\lambda} > L_{j}^{Avail} \), then the amount of labor hired by the firm will correspond to \(L_{j}^{Avail} \) (the available labor supply). Then:
\[\pi_j (w_j, L_j^{\text{Avail}}) = p \theta_f \left(\lambda L_j^{\text{Avail}} \right) - w_j L_j^{\text{Avail}} \leq \left(\text{since } \lambda < 1 \right) \]
\[< p \theta_f (L^*) - w^* L^* \quad \text{(by Proposition 1 proof)} \]
\[= \pi_j (\bar{w}, \bar{L}) \]

2) If \(L_j^{\text{FOC,} \lambda} \leq L_j^{\text{Avail}} \), then the amount of labor hired by the firm will correspond to \(L_j^{\text{FOC,} \lambda} \). Then:
\[\pi_j \left(w_j, L_j^{\text{FOC,} \lambda} \right) = p \theta_f \left(\lambda L_j^{\text{FOC,} \lambda} \right) - w_j L_j^{\text{FOC,} \lambda} \leq \left(\text{since } \lambda < 1 \right) \]
\[< p \theta_f \left(L_j^{\text{FOC,} \lambda} \right) - w_j L_j^{\text{FOC,} \lambda} \quad \text{(by FOC condn (3))} \]
\[< p \theta_f \left(L^* \right) - w^* L^* \quad \text{(by Proposition 1 proof)} \]
\[= \pi_j (\bar{w}, \bar{L}) \]

Thus, such a downward deviation cannot be profitable.

Since \(\bar{w} (\theta, p, \bar{w}_{t-1}) = w^* (\theta, p) \) for \(\theta \geq \theta_R \), this implies \(\bar{L} (\theta, p, \bar{w}_{t-1}) = L^* (\theta, p) \) because labor demand under the first order conditions (3) and (5) coincides for \(w \geq w_R \). As a result, condition (4) implies \(J \bar{L} (\theta, p, \bar{w}_{t-1}) = \frac{1}{\phi} u \left(\frac{\bar{w} (\theta, p, \bar{w}_{t-1})}{p} \right) \) for \(\theta \geq \theta_R \).

A.3: Proof of Proposition 2 (Ratcheting: Distortions from a Higher Previous Wage)

Since, from Proposition 1, \(\frac{\partial \theta_R}{\partial \lambda} > 0 \) and \(\lim_{\lambda \to 0} \theta_R = 0 \), for \(\lambda \) sufficiently small, it follows that \(\bar{w} (\theta, p, w^b) = w^b \) for \(\theta \leq \theta_R^b \).

First note that for \(\theta \in (\theta_R^a, \theta_R^b) \):
\[\bar{w} (\theta_R^a, p, w^a) = w^* (\theta_R^a, p) \quad \text{by definition of } \theta_R^a \text{ and Proposition 1} \]
\[< w^* (\theta_R^b, p) \quad \text{by Lemma 1} \]
\[= w^b \quad \text{by definition of } \theta_R^b \]
In addition, for $\theta \leq \theta^b_R$, $\overline{w}(\theta, p, w^a) \leq w^a < w^b$, where the first inequality follows from Proposition 1. Together, the above imply that $\overline{w}(\theta, p, w^a) < w^b$ for $\theta < \theta^b_R$.

Since Proposition 2 assumes $\overline{w}(\theta, p, w^b) = w^b$ for $\theta < \theta^b_R$, this implies: $\overline{w}(\theta, p, w^a) < w^b = \overline{w}(\theta, p, w^b)$ for $\theta < \theta^b_R$. Then, $\overline{L}(\theta, p, w^b) < \overline{L}(\theta, p, w^a)$ for $\theta < \theta^b_R$ by the firm’s first order condition (5).

\[\square \]

A.4: Proof of Proposition 3 (Effect of Inflation on Wage Adjustment)

The first part of the proposition states that when there is a wage distortion, real wages will fall as price levels rise. First, note that a change in the price level will shift the θ-interval over which rigidity binds. To make explicit the fact that this interval depends on p, write this interval as $\left(\tilde{\theta} R(p), \theta^R(p)\right)$. Since the rigidity binds at $\tilde{\theta}$ and \tilde{p}, this implies that $\tilde{\theta} < \theta^R(\tilde{p})$ by Proposition 2. Suppose $\tilde{\theta} \in \left(\theta^R(\tilde{p} + \epsilon), \theta^R(\tilde{p} + \epsilon)\right)$ by the fact that $\theta^R(p)$ and $\theta^R(p)$ are continuous in p. Thus, $\overline{w}(\tilde{\theta}, \tilde{p} + \epsilon, \bar{w}_{t-1}) = \bar{w}_{t-1}$.

As a result, we have:

$$
\frac{\partial}{\partial p} \left(\frac{\overline{w}(\theta, p, \bar{w}_{t-1})}{p} \right) \bigg|_{\theta = \tilde{\theta}, p = \tilde{p}} = \lim_{\epsilon \to 0} \frac{\overline{w}(\tilde{\theta}, \tilde{p} + \epsilon, \bar{w}_{t-1})}{\epsilon} - \frac{\overline{w}(\tilde{\theta}, \tilde{p}, \bar{w}_{t-1})}{\epsilon} = \lim_{\epsilon \to 0} \frac{\bar{w}_{t-1}}{\epsilon} - \frac{\bar{w}_{t-1}}{\epsilon} = 0.
$$

If $\tilde{\theta} \leq \theta^R(\tilde{p})$, then similar logic applies: an ϵ increase in the price level, firms will hold the wage fixed at \bar{w}_{t-1} (thereby experiencing an increase in profits). Thus, the real wage will fall with an ϵ increase in the price level.

The second part of the proposition states that a sufficiently large increase in the price will enable the market to achieve the market-clearing real wage. To see this, note that as the price level rises above \tilde{p}, holding the wage fixed at \bar{w}_{t-1}, labor supply will fall, while the first order condition (5) implies that labor demand will rise. There will be a $p' > \tilde{p}$ at which aggregate labor demand will be exactly equal to aggregate supply. This p' is pinned down by the following condition:

$$
p' \tilde{\theta} f' \left(\frac{1}{J \phi} u \left(\bar{w}_{t-1} / p' \right) \right) = \bar{w}_{t-1}.
$$

Note that at p' and $\tilde{\theta}$, \bar{w}_{t-1} is the market clearing wage. This implies that: $\overline{w}(\tilde{\theta}, p', \bar{w}_{t-1}) = \overline{w}(\tilde{\theta}, p', \bar{w}_{t-1}) = \bar{w}_{t-1}$.
\[w^* \left(\tilde{\theta}, p' \right) = \bar{w}_{t-1} \]
In addition, for any \(p'' \geq p' \):

\[
\begin{align*}
\bar{w} \left(\tilde{\theta}, p', \bar{w}_{t-1} \right) &= \bar{w}_{t-1} \quad \text{by definition of } p'. \\
&= w^* \left(\tilde{\theta}, p' \right) \\
&\leq w^* \left(\tilde{\theta}, p'' \right) \quad \text{since } \frac{\partial w^*}{\partial p} > 0 \\
&= \bar{w} \left(\tilde{\theta}, p'', \bar{w}_{t-1} \right) \quad \text{by Proposition 1 since } w^* \left(\tilde{\theta}, p'' \right) \geq \bar{w}_{t-1}
\end{align*}
\]

Thus, \(\forall p \geq p' \), \(\bar{w} \left(\tilde{\theta}, p, \bar{w}_{t-1} \right) = w^* \left(\tilde{\theta}, p \right) \). In addition, this implies \(L \left(\tilde{\theta}, p, \bar{w}_{t-1} \right) = L^* \left(\tilde{\theta}, p \right) \) since \(\bar{w} \left(\tilde{\theta}, p, \bar{w}_{t-1} \right) \geq \bar{w}_{t-1} \) and also implies market clearing by Proposition 1. \(\blacksquare \)
Appendix B: Data Construction

National Sample Survey

The National Sample Survey (NSS) is a nationally representative survey of over 600 Indian districts. I use the rural sample of all the Employment/Unemployment rounds of the NSS (rounds 38, 43, 50, 55, 60, 61, 62, 64, 66, covering the years 1983-2009). Households in each district are sampled on a rolling basis over the agricultural year (July to June). The survey elicits daily employment and wage information for each household member over the 7 days preceding the interview. Since the monsoon is the rainfall shock used in the analysis, I restrict the sample to the Kharif (monsoon) growing season: the months between monsoon arrival and the end of harvesting in January.43 Agricultural work is identified in the questionnaire as work activity corresponding to agricultural operations; I include all operations that fall within the period of monsoon arrival to harvesting: sowing, transplanting, weeding, and harvesting.44

The wage data is restricted to observations in which a worker was paid for work performed; these do not include imputed wages for self-employment. I compute the daily agricultural wage as paid earnings for casual agricultural work divided by days worked. I use total wage earnings: cash plus in-kind wages. 93\% of wage observations in the sample have some cash component. The wage regression results are essentially the same if log cash wages is used as the dependent variable instead of log total wages.

Across years, the Government of India has split districts and regions into smaller units; in order to keep the geographic identifiers as consistent across years as possible, I have manually recoded split districts and regions to maintain the original parent administrative units. District identifiers are not available for the first three rounds of the NSS data. For these years, the smallest geographic identifier is the region—there are on average 2.6 regions per state in the NSS data, and a region is comprised

43February-April is the lean season in rain-fed areas. In areas that plant a second crop during this season, this usually requires irrigation and the monsoon is a less important determinant of labor demand.

44In round 61, there is no data specifying agricultural operations. For this round, I identify agricultural work by using the industry code corresponding to agriculture.
of 8 districts on average. As a result, for all regressions using the NSS dataset, the geographic fixed effects are region fixed effects for the first three rounds and district fixed effects for the remaining rounds. This is equivalent to using two pooled panels with separate fixed effects for analysis. Using a common set of region fixed effects for all rounds gives similar (though less precise) results in the regressions. In addition, all regressions use the multiplier weights provided with the data.

World Bank Agriculture and Climate Dataset

The World Bank Agriculture and Climate dataset provides yearly panel data on districts in 13 states over the agricultural years 1956-1987. The unit of observation is a district-year. The wage data were compiled by Robert E. Evenson and James W. McKinsey Jr. using data from the Directorate of Economics and Statistics within the Indian Ministry of Agriculture.

The reported wage variable equals the mean daily wage for a male ploughman in the district-year. This information was collected from sampled villages within each district. A knowledgeable person in each village, such as a school teacher or village official, was asked the prevailing wage rate in the village. In years when the data for a male ploughman are not available, wages for a general male agricultural laborer are used instead.

The dataset includes data on 271 districts. I limit analysis to the 240 agricultural districts that grow at least some rice (measured as the districts whose mean percentage of land area planted with rice is at least 0.5%). Since rice is by far the dominant crop in India, districts that do not grow any rice are unlikely to engage in substantial agricultural activity. Performing the analysis below with all 271 districts gives similar results, with slightly larger standard errors.

Rainfall Data

Rainfall data is taken from *Terrestrial Precipitation: 1900-2008 Gridded Monthly Time Series* (version 2.01), constructed by Cort J. Willmott and Kenji Matsuura at the Cen-
ter for Climatic Research, University of Delaware. Rainfall estimates are constructed for 0.5 by 0.5 degree latitude-longitude grids by interpolating from 20 nearby weather stations. I match the geographic center of each district to the nearest latitude-longitude node in the rain data. These district coordinates are included in the World Bank data; for the NSS data, I have obtained them using district boundaries from the Census of India.

Consumer Price Index Data

Inflation is computed from the state-wise *Consumer Price Index for Agricultural Labourers in India*, published by the Government of India. Inflation in year t is the percentage change in the state CPI from year $t-1$ to year t. State-level CPI data is not available before the year 1957. Thus, for the years 1956 and 1957, I use national CPI numbers and use the national inflation rate across the whole country in the regressions. Omitting these 2 years in the analysis has little effect on the findings (Appendix Table 6, Col. 1).
Appendix C: Appendix Tables and Figures

Appendix Figure 1 – Impact of Rainfall on Log Crop Yield

Notes:
1. The figure plots coefficients and 95% confidence intervals from a regression of log crop yields on dummies for each decile of the rainfall distribution.
2. Log crop yields is the log of a weighted average of yields of the 20 crops for which data is available in the World Bank dataset. The yield for each crop has first been normalized by the mean yield of that crop in the district. Weights are the mean percentage of land area planted with a given crop in a district.
3. Each decile dummy equals 1 if rainfall in the current year fell within the given decile of the district’s usual rainfall distribution and equals 0 otherwise. The confidence interval for the 5th decile, which is the omitted category, is computed by averaging the confidence intervals for the 4th and 6th deciles.
4. Each regression contains district and year fixed effects, and controls for lagged positive and lagged negative shocks in the past 5 years. Analysis is limited to districts with non-positive shocks in the previous year to improve precision.
5. Standard errors are corrected to allow for clustering by region-year.
Appendix Table 1
Summary Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Observations</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>Rainfall shocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Positive Shock (1956-1987)</td>
<td>0.226</td>
<td>0.418</td>
</tr>
<tr>
<td>% No Shock (1956-1987)</td>
<td>0.626</td>
<td>0.484</td>
</tr>
<tr>
<td>% Negative Shock (1956-1987)</td>
<td>0.149</td>
<td>0.356</td>
</tr>
<tr>
<td>% Positive Shock (1982-2009)</td>
<td>0.149</td>
<td>0.356</td>
</tr>
<tr>
<td>% No Shock (1982-2009)</td>
<td>0.627</td>
<td>0.484</td>
</tr>
<tr>
<td>% Negative Shock (1982-2009)</td>
<td>0.224</td>
<td>0.417</td>
</tr>
<tr>
<td>Wage and employment variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log nominal agricultural wage (1956-1987)</td>
<td>1.208</td>
<td>0.817</td>
</tr>
<tr>
<td>Log nominal agricultural wage (1982-2009)</td>
<td>3.390</td>
<td>0.470</td>
</tr>
<tr>
<td>Agricultural employment in past week</td>
<td>1.743</td>
<td>2.783</td>
</tr>
<tr>
<td>Other measures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflation</td>
<td>0.066</td>
<td>0.095</td>
</tr>
<tr>
<td>Acres possessed by household</td>
<td>2.750</td>
<td>6.336</td>
</tr>
<tr>
<td>Acres per adult in household</td>
<td>0.633</td>
<td>0.821</td>
</tr>
</tbody>
</table>

Notes:
1. A positive (negative) shock is defined as rainfall in the first month of the monsoon above (below) the 80th (20th) percentile of the district’s usual distribution. No shock is rainfall between the 20th-80th percentile of the district’s usual distribution.
2. The nominal agricultural wage is the daily wage for casual agricultural work in each dataset.
3. Agricultural employment is the number of worker-days in the past week the individual was employed in agricultural work (either own farm or on someone else's farm).
4. Inflation equals the percentage change in the state-level CPI for Agricultural Labourers from last year to this year. In the years where state CPI is not available, national CPI is used to compute inflation (the years 1956 and 1957).
Appendix Table 2
Test for Serial Correlation in Rainfall

Dependent variable: Rainfall deviation in the current year

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Rainfall deviation in the previous year</td>
<td>-0.031 (-0.034)</td>
<td>-0.014 (0.073)</td>
</tr>
<tr>
<td></td>
<td>(0.058 (0.032)*)</td>
<td>(0.014 (0.097))</td>
</tr>
<tr>
<td>District and year fixed effects?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations: district-years</td>
<td>7,680</td>
<td>7,680</td>
</tr>
</tbody>
</table>

Notes:
1. This table tests for serial correlation in rainfall. The unit of observation is a district-year.
2. Rainfall deviation is the rainfall level in inches in the first month of the monsoon minus the district's median (50th percentile) rainfall level in that month in the sample distribution. The sample distribution for the World Bank data is computed for the years 1956-1987. The sample distribution for the NSS data is computed for the years 1982-2009.
3. Each column shows results of an OLS regression of the district's rainfall deviation in the current year on the district's rainfall deviation in the previous year. The regressions are run for the district-years of data included each respective dataset: 1956-1987 in the World Bank data and the 9 years covered in the NSS data.
4. Standard errors in each regression are corrected to allow for clustering by geographic region, as defined in the NSS data.
Appendix Table 3

Test for Wage Adjustment: 9-cell Specification

Dependent Variable: Log Nominal Daily Agricultural Wage

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>(5)</td>
<td>(6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Last year’s shock</th>
<th>This year’s shock</th>
<th>% Obs</th>
<th>% Obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>None</td>
<td>40%</td>
<td>39%</td>
</tr>
<tr>
<td>Negative</td>
<td>None</td>
<td>8%</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.011)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>None</td>
<td>Positive</td>
<td>14%</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.010)**</td>
<td>(0.011)*****</td>
</tr>
<tr>
<td>Negative</td>
<td>Positive</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.020)*****</td>
<td>(0.020)*****</td>
</tr>
<tr>
<td>Positive</td>
<td>Positive</td>
<td>5%</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.016)</td>
<td>(0.016)***</td>
</tr>
<tr>
<td>None</td>
<td>Negative</td>
<td>8%</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.012)</td>
<td>(0.012)***</td>
</tr>
<tr>
<td>Negative</td>
<td>Negative</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.017)</td>
<td>(0.017)***</td>
</tr>
<tr>
<td>Positive</td>
<td>Negative</td>
<td>4%</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.020)*</td>
<td>(0.021)*****</td>
</tr>
<tr>
<td>Positive</td>
<td>None</td>
<td>14%</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.010)***</td>
<td>(0.011)***** ***</td>
</tr>
</tbody>
</table>

Prior shock history controls? -- No Yes -- No Yes
Observations: district-years 7,680 7,680 7,680 3,548 -- --
Observations: individual-years -- -- -- 59,243 59,243

Notes:
1. The dependent variable is the log of the nominal wage for casual daily agricultural work.
2. A positive (negative) shock is defined as rainfall in the first month of the monsoon above (below) the 80th (20th) percentile of the district’s usual distribution. No shock (“None”) is rainfall between the 20th-80th percentile of the district’s usual distribution.
3. The shock sequences are presented as the shock in the previous year and the shock in the current year. Each of the 8 shock covariates is an indicator that equals 1 if the sequence of shocks was realized and equals zero otherwise. The omitted category in each regression is {None} last year and {None} this year. Cols. (1) and (4) indicate the percentage of observations in which each shock sequence was realized.
4. All regressions include district and year fixed effects. Cols. (3) and (6) add controls for positive shocks 2 years ago and 3 years ago. Standard errors are clustered by region-year.
Appendix Table 4
Correlation of Shocks with Prices and Inflation

<table>
<thead>
<tr>
<th></th>
<th>Dependent variable</th>
<th>Own CPI (1)</th>
<th>Own harvest price (2)</th>
<th>Other states' CPI (3)</th>
<th>Other states' harvest price (4)</th>
<th>Other states' inflation (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last year's shock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None, Drought, or Positive</td>
<td>Positive</td>
<td>0.67</td>
<td>-0.42</td>
<td>-0.24</td>
<td>0.13</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.24)</td>
<td>(2.29)</td>
<td>(0.17)</td>
<td>(0.35)</td>
<td>(0.0006)</td>
</tr>
<tr>
<td>None or Drought</td>
<td>Drought</td>
<td>-1.17</td>
<td>0.79</td>
<td>0.13</td>
<td>-0.20</td>
<td>0.0009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.84)</td>
<td>(2.43)</td>
<td>(0.24)</td>
<td>(0.33)</td>
<td>(0.0012)</td>
</tr>
<tr>
<td>Positive</td>
<td>Drought</td>
<td>-5.54</td>
<td>-2.27</td>
<td>0.42</td>
<td>0.79</td>
<td>0.0028</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.45)</td>
<td>(4.75)</td>
<td>(0.46)</td>
<td>(0.56)</td>
<td>(0.0014)*</td>
</tr>
<tr>
<td>Positive</td>
<td>None</td>
<td>-1.77</td>
<td>-1.08</td>
<td>-0.02</td>
<td>0.21</td>
<td>0.0017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.17)</td>
<td>(2.83)</td>
<td>(0.30)</td>
<td>(0.40)</td>
<td>(0.0012)</td>
</tr>
<tr>
<td>Observations: district-years</td>
<td></td>
<td>6,851</td>
<td>7,680</td>
<td>7,440</td>
<td>7,680</td>
<td>7,680</td>
</tr>
<tr>
<td>Dependent variable mean</td>
<td></td>
<td>275</td>
<td>111</td>
<td>260</td>
<td>117</td>
<td>0.066</td>
</tr>
</tbody>
</table>

Notes:
1. Own CPI is the district's state-level CPI for Agricultural Labourers. Own harvest price is the harvest price for paddy (i.e. rice) (given in the World Bank dataset). Inflation is the percentage change in the CPI for Agricultural Labourers since the previous year. The dependent variables in Cols. (3)-(6) are computed by averaging values for all states except the district's own state.
2. A positive (negative) shock is defined as rainfall in the first month of the monsoon above (below) the 80th (20th) percentile of the district’s usual distribution. No shock (“None”) is rainfall between the 20th-80th percentile of the district’s usual distribution.
3. The shock sequences are presented as the shock in the previous year and the shock in the current year. Each of the 4 shock covariates is an indicator that equals 1 if the sequence of shocks was realized and equals zero otherwise. The omitted category in each regression is {None or Negative} last year and {None} this year.
4. All regressions include district and year fixed effects.
5. Standard errors are clustered by region-year.
Appendix Table 5
Inflation Results: Robustness and Placebo Checks
Dependent variable: Log nominal daily agricultural wage

<table>
<thead>
<tr>
<th>Last year's shock</th>
<th>This year's shock</th>
<th>Other states’ inflation (1)</th>
<th>Linear trend (2)</th>
<th>Post-1970 dummy (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 None, Drought, or Positive</td>
<td>Positive</td>
<td>0.030</td>
<td>0.026</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.009)**</td>
<td>(0.009)**</td>
<td>(0.013)**</td>
</tr>
<tr>
<td>2 Interaction</td>
<td></td>
<td>0.005</td>
<td>-0.000</td>
<td>-0.009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.012)</td>
<td>(0.000)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>3 None or Drought</td>
<td>Drought</td>
<td>0.005</td>
<td>-0.012</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.012)</td>
<td>(0.011)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>4 Interaction</td>
<td></td>
<td>-0.220</td>
<td>-0.001</td>
<td>-0.016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.109)**</td>
<td>(0.001)</td>
<td>(0.022)</td>
</tr>
<tr>
<td>5 Positive</td>
<td>Drought</td>
<td>0.077</td>
<td>0.035</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.025)**</td>
<td>(0.020)*</td>
<td>(0.030)</td>
</tr>
<tr>
<td>6 Interaction</td>
<td></td>
<td>-0.522</td>
<td>-0.001</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.199)**</td>
<td>(0.003)</td>
<td>(0.040)</td>
</tr>
<tr>
<td>7 Positive</td>
<td>None</td>
<td>0.045</td>
<td>0.020</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.014)**</td>
<td>(0.010)**</td>
<td>(0.013)</td>
</tr>
<tr>
<td>8 Interaction</td>
<td></td>
<td>-0.271</td>
<td>0.000</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.096)**</td>
<td>(0.001)</td>
<td>(0.019)</td>
</tr>
</tbody>
</table>

Observations: district-years: 7,200
R2: 0.946
Dependent variable mean: 1.27

Notes:
1. The dependent variable is the log of the nominal wage for casual daily agricultural work. Observations are from the World Bank data.
2. A positive (negative) shock is defined as rainfall in the first month of the monsoon above (below) the 80th (20th) percentile of the district’s usual distribution. No shock ("None") is rainfall between the 20th-80th percentile of the district’s usual distribution. The shock sequences are presented as the shock in the previous year and the shock in the current year. Each of the 4 shock covariates (rows 1, 3, 5, 7) is an indicator that equals 1 if the sequence of shocks was realized and zero otherwise. The omitted category in each regression is {None or Negative} last year and {None} this year.
3. The remaining covariates (rows 2, 4, 6, 8) are interactions with the shock sequence indicators. In Col. (1) the interaction term is inflation, which equals the percentage change in the state CPI for Agricultural Labourers, averaged across all states excluding the district’s own state; this is not available for 1956 and 1957. In Col. (2) the interaction term is the calendar year of the observation. In Col. (3), it is a binary indicator for whether the year is after 1970.
4. Regressions include district and year fixed effects. Standard errors are clustered by region-year.
Appendix Table 6
Effects of Rainfall on Composition & Size of Agricultural Labor Force

<table>
<thead>
<tr>
<th></th>
<th>Individual reports being in agricultural labor force (1)</th>
<th>Individual migrated into village (2)</th>
<th>Household member migrated out of village (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Simple specification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive shock last year</td>
<td>-0.0034</td>
<td>0.0018</td>
<td>-0.0037</td>
</tr>
<tr>
<td></td>
<td>(0.0039)</td>
<td>(0.0021)</td>
<td>(0.0026)</td>
</tr>
<tr>
<td>Panel B: Full specification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last year's shock</td>
<td>This year's shock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>0.0027</td>
<td>-0.0047</td>
<td>-0.0026</td>
</tr>
<tr>
<td></td>
<td>(0.0047)</td>
<td>(0.0017)***</td>
<td>(0.0042)</td>
</tr>
<tr>
<td>Any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None or Negative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>0.0025</td>
<td>0.0027</td>
<td>-0.0053</td>
</tr>
<tr>
<td></td>
<td>(0.0035)</td>
<td>(0.0029)</td>
<td>(0.0132)</td>
</tr>
<tr>
<td>Positive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>-0.0008</td>
<td>-0.0006</td>
<td>-0.0061</td>
</tr>
<tr>
<td></td>
<td>(0.0070)</td>
<td>(0.0045)</td>
<td>(0.0128)</td>
</tr>
<tr>
<td>Positive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>-0.0048</td>
<td>0.0020</td>
<td>-0.0047</td>
</tr>
<tr>
<td></td>
<td>(0.0045)</td>
<td>(0.0019)</td>
<td>(0.0031)</td>
</tr>
<tr>
<td>Observations: individual-years</td>
<td>1,530,688</td>
<td>414,232</td>
<td></td>
</tr>
<tr>
<td>Observations: household-years</td>
<td></td>
<td></td>
<td>36,251</td>
</tr>
<tr>
<td>Dependent variable mean</td>
<td>0.389</td>
<td>0.230</td>
<td>0.035</td>
</tr>
</tbody>
</table>

Notes:
1. In Col. (1), the dependent variable is an indicator that equals 1 if the respondent indicated agriculture as his/her primary or subsidiary occupation, and equals 0 otherwise. The sample is comprised of all rural residents from all rounds of the NSS.
2. In Col. (2), the dependent variable is an indicator that equals 1 if the individual is a migrant into the village and 0 otherwise. The sample is comprised of all rural residents in rounds for which questions on individual-level in-migration status were asked (rounds 38, 43, 55).
3. In Col. (3), the dependent variable is an indicator that equals 1 if the household reports having a member who has migrated out in the past year and 0 otherwise. The sample is comprised of all rural households in round 64, which has data on out-migration status by year, surveyed in the final quarter of the agricultural year (so that the 1 year recall links cleanly to agricultural year).
4. A positive (negative) shock is defined as rainfall in the first month of the monsoon above (below) the 80th (20th) percentile of the district’s usual distribution. No shock ("None") is rainfall between the 20th-80th percentile of the district’s usual distribution.
5. In Panel A, the shock covariate is a dummy for a positive shock in the previous year.
6. In Panel B, each of the 4 shock covariates is an indicator that equals 1 if the sequence of shocks (presented as the shock in the previous year and the shock in the current year) was realized and equals zero otherwise. The omitted category in these regressions is {None or Negative} last year and {None} this year.
7. Results are from OLS regressions. Regressions (1) and (2) contain district and year fixed effects. Standard errors are clustered by region-year.
Appendix Table 7
Impact of Shocks on Capital Inputs

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Bullocks (1)</th>
<th>Tractors (2)</th>
<th>Fertilizer (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive shock last year</td>
<td>-0.001</td>
<td>0.009</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.024)</td>
<td>(0.022)</td>
</tr>
</tbody>
</table>

Panel A: Simple specification

<table>
<thead>
<tr>
<th>Last year's shock</th>
<th>This year's shock</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None, Drought, or Positive</td>
<td>Positive</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.011)</td>
</tr>
<tr>
<td>None or Drought</td>
<td>Drought</td>
<td>-0.012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.013)</td>
</tr>
<tr>
<td>Positive</td>
<td>Drought</td>
<td>-0.012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.021)</td>
</tr>
<tr>
<td>Positive</td>
<td>None</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.011)</td>
</tr>
</tbody>
</table>

Panel B: Full specification

<table>
<thead>
<tr>
<th>Last year's shock</th>
<th>This year's shock</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None, Drought, or Positive</td>
<td>Positive</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.011)</td>
</tr>
<tr>
<td>None or Drought</td>
<td>Drought</td>
<td>-0.012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.013)</td>
</tr>
<tr>
<td>Positive</td>
<td>Drought</td>
<td>-0.012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.021)</td>
</tr>
<tr>
<td>Positive</td>
<td>None</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.011)</td>
</tr>
</tbody>
</table>

Observations: district-years | 7,680 | 7,680 | 7,680
Dependent variable mean | 0.000 | 0.000 | 0.000

1. The dependent variables are number of bullocks, number of tractors, and amount of nitrogen fertilizer (the most common fertilizer input) used in rural production. The source is the World Bank dataset. All dependent variables are standardized to have a mean of 0 and standard deviation of 1.
2. A positive (negative) shock is defined as rainfall in the first month of the monsoon above (below) the 80th (20th) percentile of the district’s usual distribution. No shock (“None”) is rainfall between the 20th-80th percentile of the district’s usual distribution.
3. In Panel A, the shock covariate is a dummy for a positive shock in the previous year.
4. In Panel B, each of the 4 shock covariates (rows 1, 3, 5, 7) is an indicator that equals 1 if the sequence of shocks (presented as the shock in the previous year and the shock in the current year) was realized and equals zero otherwise. The omitted category in these regressions is {None or Negative} last year and {None} this year. Each covariate is interacted with the number of acres per adult in the household (rows 2, 4, 6, 8).
5. All regressions include district and year fixed effects.
6. Standard errors are clustered by region-year.
Appendix Table 8
Survey Responses to Employment Scenarios

<table>
<thead>
<tr>
<th>Question</th>
<th>Panel A: Laborers (N=196)</th>
<th>Panel B: Landowning farmers (Employers) (N=200)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Do you remember any year when the agricultural wage in this village</td>
<td>0.00 -- 1.00</td>
<td>0.00 -- 1.00</td>
</tr>
<tr>
<td>was less than the wage [for that season] in the year before?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a Have there been times when you would have liked to work at the</td>
<td>0.74 -- 0.26</td>
<td>0.39 0.25 0.37</td>
</tr>
<tr>
<td>prevailing wage but did not obtain work?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2b How often have you faced this problem of involuntary unemployment?</td>
<td>-- -- --</td>
<td></td>
</tr>
<tr>
<td>Every year (0.60); Some years (0.12); Rarely (0.02); Never (0.26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 If a laborer was willing to accept work at a rate lower than the</td>
<td>0.61 0.20 0.19</td>
<td>0.58 0.24 0.18</td>
</tr>
<tr>
<td>prevailing wage, would he be more likely to obtain work from farmers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in the village?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 When you have difficulty finding work at the prevailing wage, do</td>
<td>0.31 0.22 0.47</td>
<td></td>
</tr>
<tr>
<td>you offer to work at a lower wage?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Suppose the prevailing wage is Rs. 100 per day. You have been</td>
<td>0.58 0.24 0.18</td>
<td></td>
</tr>
<tr>
<td>unemployed for a long time and are in urgent need of money. If a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>farmer offers you Rs. 95 for one day of work, would you accept the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>job?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The sample is comprised of 196 casual laborers and 200 landowning farmers (i.e. employers) from 34 villages across 6 districts in the Indian states of Orissa and Madhya Pradesh. Respondents were working males aged 20-80.
2. Interviews were conducted July-August 2011.
3. The tabulation of responses for Question 2b is reported below the statement of the question.